

Towards Demand-Aware Peer Selection With XOR-based Routing

Qingyun Ji, Darya Melnyk, Arash Pourdamghani, Stefan Schmid

Invited Paper, SSS'25

Towards Demand-Aware Peer Selection With XOR-based Routing (1) (2) (3)

Qingyun Ji, Darya Melnyk, Arash Pourdamghani, Stefan Schmid

Invited Paper, SSS'25

An Empirical Step Towards Optimal Demand-aware Networks

Nielsen's Law of User Internet Bandwidth

...while we are reaching the end of Moore's law*!

Structure in The Demand!

Destination Server

*log (Bytes) exchanged between server pairs in a 10s period

Demand-aware

Ideal for when changing network is not possible/costly

When rapid changes are acceptable, why not?

Static

Dynamic

Design of traditional infrastructures

Best for when limited operations (e.g., rotor) are allowed

Demand-oblivious

Zooming Out: Some Prior Works in Networking

A Theoretical View At
Peer Selection Algorithms

Input:

Input:

Constraints:

• $\log n$ degree

Input:

Constraints:

- $\log n$ degree
- Constructed locally

Input:

Constraints:

- $\log n$ degree
- Constructed locally

Objective:

$$\min_{E} \sum_{i,j \in \mathcal{V}} path \ length_{ij} \times \mathcal{D}_{ij}$$

Input:

$$\mathcal{D} = \begin{bmatrix} 0 & 0.15 & 0.2 & 0 \\ 0.05 & 0 & 0.05 & 0.1 \\ 0 & 0.05 & 0 & 0.1 \\ 0.1 & 0.05 & 0.25 & 0 \end{bmatrix}$$

Constraints:

- $\log n$ degree
- Constructed locally

Objective:

 \otimes

0	1	1	2
2	0	1	1
2	3	0	1
1	2	1	0

0	0.15	0.2	0
0.05	0	0.05	0.1
0	0.05	0	0.1
0.1	0.05	0.25	0

$$= 0.35 + 0.25 + 0.25 + 0.45 = 1.3$$

Selected Prior Peer-selection algorithms

Chord

[Stoica et al., 2003]

Blind to demand

Selected Prior Peer-selection algorithms

Chord

[Stoica et al., 2003]

Blind to demand

Permutations

[W. Wang et al., 2023]

Coin-change routing

Other relevant related work

Other Peer-selection algorithms:

- Kademlia: randomized peer selection [Maymounkov, Mazieres, 2002]
- Continuous-discrete approach [Naor, Wieder 2003]

Network augmentation for minimizing average shortest path length:

- Small world phenomenon [Kleinberg, STOC 2000] and [Watts and Strogatz, 1998]
- NP-hardness and approximation for adding fixed number of edges [Meyerson and Tagiku, 2009]

Supporting XOR-Based Routing

Why XOR-Based Routing?

We need a routing mechanism that would be:

- Simple: does not require complex computation
- Local: only depends on information of neighbors
- Greedy: each step bring you closer to destination

What is XOR-Based Routing?

To route from a source to a destination:

- 1. Take XOR of the current node and the destination
- 2. Find the left most "1", call its index i
- 3. Go to the node that is different in i-th bit compared to the current ID
- 4. Go to step 1 and repeat until reaching destination

Our peer selection algorithm supports XOR-based routing by design.

Our Algorithms: Binary Search in Buckets

Our Algorithms: Binary Search in Buckets

i	0 (src)	1	2	3	4	5	6	7
$demand_{0,i}$	0	0.15	0.05	0.1	0.05	0.15	0.2	0.3

Our Algorithms: Binary Search in Buckets

Our Algorithms: Binary Search in Buckets (BSB) - Max Demand

Our Algorithms: Binary Search in Buckets (BSB) – Half-split

Empirical Results: Synthetic Traffic Data

Empirical Results: Real-world Datasets

Conclusion & Future Work

Conclusion

- We introduced a demand-aware peer selection algorithm with XOR-based routing
- With skewed demand, BSB reduced communication cost, by up to 43% compared to SOTA.
- Future work
 - Providing a randomized variant of the algorithm.
 - Deployment in other application areas, e.g. blockchain systems.

Full paper:

https://arxiv.org/pdf/2509.20974

Simulation code:

github.com/inet-tub/BSB

Our group's website:

tu.berlin/en/eninet

