
The Augmentation-Speed Tradeoff
for Consistent Network Updates

SOSR 2022

Joint work with Monika Henzinger, Ami Paz, Stefan Schmid

Arash Pourdamghani, TU Berlin

Network updates via SDN

Ø Networks are prone to be more dynamic

2

Network updates via SDN

Ø Networks are prone to be more dynamic

Ø SDN simplifies and allows for fast updates

SDN

3

Network updates via SDN

Ø Networks are prone to be more dynamic

Ø SDN simplifies and allows for fast updates

Ø However, SDN introduces new challenges,…

SDN

4

A challenge in SDN updates: non-consistent update times!

SDN

Terminal serverSource server

5

A challenge in SDN updates: non-consistent update times!

SDN

Terminal serverSource server

6

First side effect

Final configuration

Initial configuration

7

First side effect

Final configuration

Initial configuration

SDN

8

First side effect: transient loops

Final configuration

Possible middle configuration

Initial configuration

9

Network updates via SDN

Ø Networks are prone to be more dynamic

Ø SDN simplifies and allows for fast updates

Ø However, SDN introduces new challenges,…

SDN

10

Second side effect: congestion

Capacity =
4 packets

Final configuration

Capacity =
4 packets

Initial configuration

11

Final configurationInitial configuration

SDN

Second side effect: congestion

12

Second side effect: congestion

Possible Middle configuration Final configurationInitial configuration

Capacity =
4 packets

Capacity =
4 packets

Capacity =
4 packets

13

Problem definition

Ø Input: given a network with:

Ø multiple unsplittable flows with different demands from different sources and

terminals

Ø different capacity on each link

Ø unknown update delays on each switch

14

Problem definition

Ø Input: given a network with:

Ø multiple unsplittable flows with different demands from different sources and

terminals

Ø different capacity on each link

Ø unknown update delays on each switch

Ø Goal:

Ø routing packets in a minimum number of ”rounds”,

Ø no packets stuck in a loop, nowhere in the network,

Ø not going over the capacity of links

15

Our proposed Solution: Augmentation

Capacity =
𝟒 ∗ 𝜶 packets

or 𝟒 + 𝜷 packets

16

How to realize augmentation?

Ø Augmentations are needed temporarily.

Capacity =
𝟒 ∗ 𝜶 packets

or 𝟒 + 𝜷 packets

17

How to realize augmentation?

Ø Augmentations are needed temporarily.

Ø Networks are equipped with buffer to handle bursts.

18

How to realize augmentation?

Ø Augmentations are needed temporarily.

Ø Networks are equipped with buffer to handle bursts.

Ø Congestion control in virtual networks

19

Selected previous works

NP-hardness of finding 3-round update schedule [FLMS, TON’18]

An example with Ω 𝑛 rounds [LMS, PODC’15]

1 round

∞ rounds

U
p

d
a

te
 T

im
e

Poly-time algorithm for 2-round update schedule [FLMS, TON’18]

O 𝑛 rounds is feasible [MW, HotNets’13]

Synthesizing update schedules [LMSS, TASE’22]

Solving a variant with waypoints [LDRS, SIGMETRICS’16]

20

Our contribution: introducing a new dimension

Our solution space
1 round

P
e

rc
e

n
ta

g
e

 o
f

F
e

a
s

ib
le

 C
a

s
e

s

0%

100%

Augmentation0 ∗2

U
p

d
a

te
 T

im
e

∞ rounds

21

Our contribution: introducing new optimal & feasible schedules

1 round

P
e

rc
e

n
ta

g
e

 o
f

F
e

a
s

ib
le

 C
a

s
e

s

0%

100%

Augmentation0 ∗2

U
p

d
a

te
 T

im
e

Our solution space

∞ rounds

22

Our contribution: theoretical proofs

Our solution space
1 round

P
e

rc
e

n
ta

g
e

 o
f

F
e

a
s

ib
le

 C
a

s
e

s
0%

100%

Augmentation0 ∗2

U
p

d
a

te
 T

im
e

𝑛 rounds 100%

Theorem 1:
Any update schedule will be valid

with ∗ 2 augmentation

∗2

Theorem 2:
It is NP-hard to find an update schedule

with ∗ (2 − 𝜖) augmentation

23

NP-Hardness of finding an optimal

A 3SAT Problem

𝐶! = 𝑥" ∨ ¬𝑥"+ ∨ 𝑥"++

𝐶 = 𝐶# ∧ 𝐶$ ∧ ⋯𝐶%

24

NP-Hardness of finding an optimal

A 3SAT Problem

𝐶! = 𝑥" ∨ ¬𝑥"+ ∨ 𝑥"++

𝐶 = 𝐶# ∧ 𝐶$ ∧ ⋯𝐶%

𝐹! 𝐹" 𝐹#𝐹"
𝐹!

𝐹#

𝑢$
𝑢!
"

𝑣!
"

𝑢!
"

𝑣!
"

𝑢$

𝑣$ 𝑣$

𝑤%!

𝑤! 0

𝑤! 𝑎 − 1

𝑤! 𝑎

𝑢!" 𝑣!"

𝑤%" 𝑤%!

𝑤! 0

𝑤! 𝑎 − 1

𝑤! 𝑎

𝑢!" 𝑣!"

𝑤%"

𝑤! 1 𝑤! 1
𝑤! 2 𝑤! 2

𝑢$

𝑡

𝑠

𝑣$
𝑠

𝑤!
#

𝑡

𝑤!
$ 𝑤! 𝑎

Variable gadgets

Clause gadgets

blocking gadgets

25

An optimal solution based on MIP

26

An optimal solution based on MIP: breakdown

Loop-freedom

Congestion-freedom

Split-avoidance

27

An optimal solution based on MIP: key insights

Miller-Tucker-Zemlin formulation

Enforces ordering among switches

Loop-freedom

28

An optimal solution based on MIP: key insights

Branch and merge points

Enforcing strict source-terminal paths

Split-avoidance

29

An optimal solution based on MIP: key insights

Congestion freedom

Limiting flows Congestion-freedom

30

Fast algorithms: Greedy

Ø Goal: optimizing the number of rounds

31

Fast algorithms: Greedy

Ø Goal: optimizing the number of rounds

Ø Method: backward recursions from terminal

32

Fast algorithms: Greedy

Ø Goal: optimizing the number of rounds

Ø Method: backward recursions from terminal

Ø Proof of termination: by induction

33

Fast algorithms: Delay

Ø Goal: optimizing congestion

34

Fast algorithms: Delay

Ø Goal: optimizing congestion

Ø Method: searching for best delayed path

35

Fast algorithms: Delay

Ø Goal: optimizing congestion

Ø Method: searching for best delayed path

Ø Proof of termination: stops when no changes happen in augmentation

36

Empirical counter-part of the tradeoff

37
Code is available at github.com/inet-tub/AugmentRoute

https://github.com/inet-tub/AugmentRoute

MIP vs. Greedy vs. Delay

38

Summary

Ø Concept: introducing augmentation for consistent updates

Ø Theory:

Ø any schedule is consistent with ∗ 𝟐 augmentation,

Ø finding a consistent schedule with ∗ 𝟐 − 𝝐 augmentation is NP-hard

Ø Algorithms:

Ø a mixed integer program to find the optimal number of

rounds/augmentation

Ø fast algorithms minimizing the number of rounds/augmentation

Ø Empirical evaluation: confirming our theories

Ø Future work: Supporting splittable flows or way-pointing

39

Thank you!

