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Network updates via SDN

Ø Networks are prone to be more dynamic
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A challenge in SDN updates: non-consistent update times!
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First side effect

Final configuration
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First side effect: transient loops
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Second side effect: congestion
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Second side effect: congestion
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Problem definition

Ø Input: given a network with:

Ø multiple unsplittable flows with different demands from different sources and 

terminals

Ø different capacity on each link

Ø unknown update delays on each switch
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Problem definition

Ø Input: given a network with:

Ø multiple unsplittable flows with different demands from different sources and 

terminals

Ø different capacity on each link

Ø unknown update delays on each switch

Ø Goal:

Ø routing packets in a minimum number of ”rounds”,

Ø no packets stuck in a loop, nowhere in the network,

Ø not going over the capacity of links
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Our proposed Solution: Augmentation

Capacity = 
𝟒 ∗ 𝜶 packets

or 𝟒 + 𝜷 packets
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How to realize augmentation?

Ø Augmentations are needed temporarily.
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How to realize augmentation?

Ø Augmentations are needed temporarily.

Ø Networks are equipped with buffer to handle bursts.

Ø Congestion control in virtual networks
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Selected previous works

NP-hardness of finding 3-round update schedule [FLMS, TON’18]

An example with Ω 𝑛 rounds [LMS, PODC’15]
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Poly-time algorithm for 2-round update schedule [FLMS, TON’18]

O 𝑛 rounds is feasible  [MW, HotNets’13]

Synthesizing update schedules [LMSS, TASE’22]

Solving a variant with waypoints [LDRS, SIGMETRICS’16]
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Our contribution: introducing a new dimension

Our solution space
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Our contribution: introducing new optimal & feasible schedules
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Our contribution: theoretical proofs

Our solution space
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Theorem 1: 
Any update schedule will be valid 

with ∗ 2 augmentation

∗2

Theorem 2:
It is NP-hard to find an update schedule

with ∗ (2 − 𝜖) augmentation
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NP-Hardness of finding an optimal 

A 3SAT Problem 

𝐶! = 𝑥" ∨ ¬𝑥"+ ∨ 𝑥"++

𝐶 = 𝐶# ∧ 𝐶$ ∧ ⋯𝐶%
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An optimal solution based on MIP

26



An optimal solution based on MIP: breakdown

Loop-freedom

Congestion-freedom

Split-avoidance
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An optimal solution based on MIP: key insights

Miller-Tucker-Zemlin formulation

Enforces ordering among switches

Loop-freedom
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An optimal solution based on MIP: key insights

Branch and merge points

Enforcing strict source-terminal paths

Split-avoidance
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An optimal solution based on MIP: key insights

Congestion freedom

Limiting flows Congestion-freedom
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Fast algorithms: Greedy

Ø Goal: optimizing the number of rounds
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Fast algorithms: Greedy

Ø Goal: optimizing the number of rounds

Ø Method: backward recursions from terminal
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Fast algorithms: Greedy

Ø Goal: optimizing the number of rounds

Ø Method: backward recursions from terminal

Ø Proof of termination: by induction
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Fast algorithms: Delay

Ø Goal: optimizing congestion
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Fast algorithms: Delay

Ø Goal: optimizing congestion

Ø Method: searching for best delayed path
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Fast algorithms: Delay

Ø Goal: optimizing congestion

Ø Method: searching for best delayed path

Ø Proof of termination: stops when no changes happen in augmentation
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Empirical counter-part of the tradeoff
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Code is available at github.com/inet-tub/AugmentRoute

https://github.com/inet-tub/AugmentRoute


MIP vs. Greedy vs. Delay 
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Summary

Ø Concept: introducing augmentation for consistent updates

Ø Theory: 

Ø any schedule is consistent  with ∗ 𝟐 augmentation,

Ø finding a consistent schedule with ∗ 𝟐 − 𝝐 augmentation is NP-hard

Ø Algorithms:

Ø a mixed integer program to find the optimal number of 

rounds/augmentation

Ø fast algorithms minimizing the number of rounds/augmentation

Ø Empirical evaluation: confirming our theories

Ø Future work: Supporting splittable flows or way-pointing
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Thank you!


