
Demand-Aware Multi-Source IP-Multicast:
Minimal Congestion via Link Weight Optimization

Matthias Bentert
University of Bergen

Max Franke
TU Berlin

Darya Melnyk
TU Berlin

Arash Pourdamghani
TU Berlin

Stefan Schmid
TU Berlin & Fraunhofer SIT

Abstract—Multicast is a fundamental communication primi-
tive that can improve the efficiency of many distributed systems.
However, current algorithms to construct multicast trees only
consider link capacities and are oblivious to the bandwidth
demands of senders. Such demand-oblivious approaches can
result in suboptimal resource allocations and congestion.

In this work, we initiate the study of a demand-aware multi-
source IP-multicast. In particular, we consider how an operator
can optimize link weights to minimize congestion along multiple
(and hence possibly overlapping) multicast trees. We show that
this problem is NP-hard even in very restricted settings such
as (i) where there are only two possible link weight values or
(ii) where the graph contains only a single receiver. To obtain
optimal solutions as well as a baseline for comparison, we also
present a mixed integer linear program. We then suggest two
fast heuristics, DA-Picky and DA-Hybrid, based on maximum-
bottleneck spanning trees. Our empirical results, based on
real-world data, show that our algorithms outperform today’s
demand-oblivious approach and scale to large networks.

Index Terms—Multicast, congestion control, algorithm design

I. INTRODUCTION

IP layer multicast, a key communication primitive, is well
studied in theory and practice, and aims to reduce load
on both the network components and end-point servers. Its
applications range from satellite [1], local/campus [2], to
financial [3] networks. In addition, there has been renewed
interest in recent years for mass media use cases [4]. This
has also led to new standards being developed for multicast
routing and tree construction. In particular, BIER [5] is start-
ing to get rolled out by ISPs to replace the more cumbersome
PIM [6].

One major aspect that has so far not been considered from
either the theoretical nor practical side is that of bandwidth-
demand aware multicast. It is common that multicast senders
use constant and predetermined bitrates. For example, video
live streams could be in either 1080p or 4K. Not only
incorporating this information in route selection give senders
a guarantee that their required bandwidth has been assigned
to them, it would also lead to more efficient utilization
of available link capacities. In addition, it would allow to
provide guarantees to senders that their required bandwidth
is allocated to them.

This work was supported by the Federal Ministry of Education and
Research of Germany in the program “Souverän. Digital. Vernetzt.” Joint
project 6G Research and Innovation Cluster (6G-RIC), project identification
number: 16KISK030. ISBN 978-3-903176-72-0 © 2025 IFIP.

In this paper, we consider a traffic-engineering perspective
on multicast, where IP traffic is forwarded along shortest
paths, which can be influenced by operators indirectly, by
defining link weights. This model is standard for IP traffic
but recently also received more attention in the context
of emerging segment routing [7]–[10] and software-defined
networks [11]–[13].

In this work we first lay the theoretical foundations, show-
ing that such weight assignment is NP hard. This highlights
the need for fast heuristics to tackle this issue. We then
introduce two such heuristics and show how they compare
to the optimal solution that we derive from a Mixed Integer
Linear Program (MILP). By doing so, we show the tangible
benefits that bandwidth aware mutlicast can bring to realistic
scenarios. We hope this will form the basis for both future
research into more efficient heuristics but also encourage the
development of protocols that can bring our approach into
practice.

A. Our contribution

In this paper, we consider the classic problem of allocating
multicast trees in an IP network, where routing follows short-
est paths which are determined by link weights. In contrast to
prior work, we assume a demand-aware perspective, aiming
to improve resource allocations based on the actual traffic
pattern by tuning link-weights. We prove that finding optimal
link weights for our demand-aware multicast tree allocation
problem is computationally hard, i.e., NP-hard, even in very
restricted settings such as (i) when we are only allowed
to choose among two possible link weights or (ii) when
considering only a single receiver. Our results also imply
that achieving any finite approximation factor is NP-hard.

We then show how an optimal solution can be obtained
using a mixed integer linear program and discuss two fast
demand-aware heuristics, DA-Picky and DA-Hybrid (DA
stands for demand-aware) that aim to make weight selection
more bandwidth-aware. We complement our theoretical re-
sults with an empirical evaluation based on both real-world
and a variety of synthetic datasets. We find that our novel
heuristics can provide better solutions in particular in cases
with high bandwidth requirements.

B. Related work

IP traffic engineering is well-studied in the literature [8],
[14], [15]. Most of the focus of previous results consider the

case where the flows are split in each branching point. In this
setting, finding a constant-factor approximation to optimize
weights of links for a single source destination pair is NP-
hard [14], [16]. These approaches significantly differ from
our multicast setting where flows are not splitted.

There are previous works that discuss constructions of a
single optimal multicast tree, given various constraints [17],
[18]. However, these works do not consider the effects of
overlapping of such trees, which is a particularly challenging
optimization problem. On the other hand, works such as [19],
[20] that consider multiple multicast trees, and suggest an
optimization approach for it, does not consider the weight
setting requirement, and hence their approach does not nec-
essarily follow the shortest weighted paths. Hence, to the best
of our knowledge, no prior work has considered a demand-
aware congestion optimized weight setting in the case of IP
multicast for multiple sources. The need for such a solution
has been further showed in a recent work [21].

The idea of constructing maximum(or minimum)-
bottleneck trees has been proposed in prior works with the
goal of extending the unicast view, in particular for streaming
use cases [22], [23]. The idea of overlapping spanning trees
have been used to build optimized overlay networks [24],
[25] and also ad hoc networks [26].

From the practical side, the traditional protocol, called
PIM [6], that is used for inter-domain multicast routing
requires large states on the involved routers. It has therefore
partly been replaced by BIER [5], which solves the state
issue by encoding multicast routers in an additional header.
However, BIER, unlike PIM, does not handle all types of
multicast. Instead, it requires extensions that handle the
process of determining which routers need to be included
in the header.

C. Paper outline

The rest of the paper is structured as follows: In §II we for-
mally introduce the demand-aware (DA) multicast problem.
We then show in §III that demand-aware multicast is NP-
hard even in very restricted special cases. We introduce our
mixed integer linear program in §IV and present heuristics
in §V. We then briefly discuss results of our experimental
evaluation §VI and conclude our work in §VII.

II. PROBLEM DEFINITION

In this section, we formalize our model and the demand-
aware multicast problem, DA-MULTICAST. Our model cap-
tures the case of adjusting link weights with the objective of
minimizing the maximum congestion over any link.

We say that a directed graph is symmetric if for each
link (u, v) in the graph, the reverse link (v, u) is also present
and we only consider symmetric directed graphs. We assume
that each link l ∈ L has a capacity cl. Let G = (V,A)
be a directed symmetric graph where V indicates the set
of vertices/nodes (we use these two terms interchangeably).
Let S ⊆ V be the set of sources. For each source s ∈ S we
consider an integer bs as bandwidth demand of the source,

and a set Rs as receivers of that source. We aim to optimize
variable C ∈ N that indicates a positive congestion. In other
words, we aim to minimize the links (over)-utilization 1. The
task is to assign weight wl to each link.This link weight
is used later on to determine the path between source and
destinations. We consider a full-duplex scenario, where a
different amount of flow can be passed over each link. We
consider a link weight with the following properties:

• w(u,v) = w(v,u) for each link (u, v) ∈ L ,
• there is a unique shortest path2 Ps,r from each source s

to each receiver r ∈ Rs, and
• for each link l = (u, v) it holds that∑

s∈S

(bs · max
r∈Rs

1l∈Ps,r
) ≤ cl + C.

Here 1l∈Ps,r is one if l belongs to the unique shortest path
from s to r and zero otherwise.

Intuitively, we assign weights to all link pairs such that the
congestion C is minimized. Each source thereby transfers bs
units via shortest paths to all receivers that subscribed to this
source. The data is only transferred once over each link and
can be duplicated in the nodes if necessary. You can see an
example of the problem, and also an example of assigning
weights that can result to a huge congestion in Figure 1.

One of the key reasons that make this model particularly
challenging is that we can not split the traffic based on the
source or a receiver of a path: all the routing decisions should
be done based on the weights. Furthermore, the fact that
nodes can duplicate traffic differentiates this problem more
from traditional multi-commodity flow problems.

III. HARDNESS RESULT

In this section, we show that DA-MULTICAST is NP-hard,
even when considering only two possible integer weights.
Before going to the proofs, we need to clarify some prelim-
inaries.

A. Preliminaries

In VERTEX-DISJOINT PATHS (or EDGE-DISJOINT
PATHS), we are given an undirected graph G and k
terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk) and the task is
to find k paths P1, P2, . . . , Pk such that si and ti are the
endpoints of Pi and for each pair 1 ≤ i < j ≤ k it holds
that paths Pi and Pj are vertex-disjoint (edge-disjoint),
that is, they do not share any vertices (edges). We use the
following result due to Middendorf and Pfeiffer [27].

Theorem 1 (Middendorf and Pfeiffer [27], Theorem 2).
PLANAR VERTEX-DISJOINT PATHS is NP-hard on graphs
with maximum degree three.

1Over-utilization of a link is an indication that link capacities need to be
updated.

2Length of Ps,r is the sum of weights wl along Ps,r . Focusing on the
shortest path ensures compatibility of our model with most traditional IP
routing protocols.

1Sender 10 units 2

Sender 5 units

3

4

Receiver (2)

5Receiver (1)

10
8 10

10
20

(a) An instance of the input to the problem.

1Sender 10 units 2

Sender 5 units

3

4

Receiver (2)

5Receiver (1)

10+0
2

8+72 10+0
5

10+0
2

20+0
2

(b) Weights, multicast trees and congestion on each link.

Figure 1: Figure 1a shows an instance of the problem with two senders (and their required bandwidth) and two receivers
(with their respective sources). The black integers on each line determine the capacity of that link, which is equal for
both directions. Figure 1b shows a bad example of setting the weight of each link (in both directions) in purple, and the
congestion that link needs to tolerate (given the multicast trees created using the weights) in red. In this case, we can see
the congestion of the whole network is 7, which could have been avoided if we set the between nodes 2 and 4 lower than
four.

In PLANAR 2P1N-3-SAT, we are given a formula Φ in
conjunctive normal form (CNF) where each clause contains
two or three literals and each variable appears at most twice
positive and exactly once negative in a clause in Φ. Moreover,
we are given a planar embedding of the (bipartite and planar)
graph H that contains a vertex vi for each variable xi and
a vertex uj for each clause Cj and an {uj , vi} if and only
if Cj contains xi or ¬xi.

Proposition 1 (folklore). PLANAR 2P1N-3-SAT is NP-hard
and, assuming the the Exponential-Time Hypothesis (ETH),
it can not be solved in 2o(

√
n+m) time.

B. Hardness proof

In this section, we show that DA-MULTICAST is NP-hard
even in three very restricted special cases. The first special
case is that the input graph is planar, each sender has a
bandwidth requirement of 1, and only a single receiver is
subscribed to each sender. Moreover, the maximum degree
in the graph is six and the question is whether C = 0 can be
achieved. Note that the latter also rules out any approximation
algorithms in terms of C. In the second special case, the
graph contains only a single receiver and C = 0. In the third
special case, we are only allowed to assign weights 1 or 2
to edges and the requirements of the first special case also
apply to the third. Our hardness results also imply that DA-
MULTICAST can not be solved in 2o(n+m) time unless the
ETH fails. We defer detailed proof of this theorem to the
Appendix A and only give a high-level idea here.

Theorem 2. DA-MULTICAST is NP-hard even if the in-
put graph is a planar graph of maximum degree six,
|Rs| = bs = 1 for each source s, ca = 1 for each link a,
and C = 0.

We develop a reduction from VERTEX-DISJOINT PATHS
on graphs with maximum degree three. To this end, let
I = (G = (V,E), (s1, t1), (s2, t2), . . . , (sk, tk)) be an in-
stance. We start by replacing each edge {u, v} ∈ E by two
directed links (u, v) and (v, u). The capacity of each link
is 1. We make each si and ti both a sender and a receiver

such that si is subscribed to ti and ti is subscribed to si. The
bandwidth demand is always 1. Now, there is solution to the
constructed instance of DA-MULTICAST with C = 0 if and
only if there is a set of disjoint paths between all terminal
pairs (si, ti). We can also replace each terminal vertex by
a small gadget such that no vertex is both a sender and a
receiver. Next, we show that the problem remains hard, even
if there is only a single receiver.

Proposition 2. DA-MULTICAST is strongly NP-hard even if
there is only a single receiver and C = 0.

The full proof of the above proposition can be found in
Appendix B. In summary, here, we reduce from BIN PACK-
ING. For a given instance of BIN PACKING, we construct
an equivalent instance of DA-MULTICAST as follows. We
start with a source si for each item i and a single receiver r,
where the bandwidth requirement bsi is the size of i and r is
subscribed to each source. Next, we add a vertex vj for each
bin j ∈ [k]. We add a link of capacity B from each source si
to each vertex vj and from each vertex vj to r. The idea is
that the input instance is a yes-instance if and only if we can
send bsi units from each source to some vertex vj in such a
way that each vertex vj can send a combined of B units to r,
that is, the input instance of BIN PACKING is a yes-instance.

C. Adding length bounds

In this section, we study a variant of DA-MULTICAST
where the input contains an additional set L and we are only
allowed to assign link-lengths in L. We call the problem
LENGTH-BOUNDED NETWORK MULTICAST and note that
DA-MULTICAST is the special case of it where all link-
lengths are allowed. However, it is a priori not clear whether
restricting L to some constant size makes the problem easier
or harder. Due to space constraints, we include the detailed
proof of this theorem in the full version of the paper and
only give a high-level idea here.

Theorem 3. LENGTH-BOUNDED NETWORK MULTICAST is
NP-hard even if the input graph is planar and has maximum
degree 6, |Rs| = bs = 1 for each source s, R∩S = ∅, ca = 1

Input Var. Meaning
S The set of sources
Rs The set of receivers from source s ∈ S
Bs Bandwidth requirement of a source
Nx Neighbors of node x

c(x,y) capacity of the link (x, y)

MILP Var. Meaning
C Maximum congestion over all links

w(x,y) Weight of link (x, y)
distx,y Distance from node x to node y
a(x,y) Activity of link (x, y)
asx→y Activity of directed link x → y from s

as,rx→y Activity of directed link x → y from s to r
ax,z,y Activity of z from source s between x and y

Table I: A summary of variables used in the mixed integer
linear program. First part of the table shows input variables,
and the second part shows variables needed in the MILP.

for each link a, C = 0, and L = {1, 2}. Moreover assuming
the ETH, this special case can not be solved in 2o(

√
n+m)

time.

The idea for this hardness result is basically the same
as for theorem 2 but some details have to handled in
slightly different ways. In particular, we reduce directly
from PLANAR 2P1N-3-SAT and combine the reduction from
PLANAR 2P1N-3-SAT by Middendorf and Pfeiffer [27] with
the reduction behind theorem 2 in a non-sequential way.

We mention in passing that if we do not require the input
graph to be planar, then we can use the same reduction as in
Theorem 3 but start from (non-planar) 2P1N-3-SAT to show
that LENGTH-BOUNDED NETWORK MULTICAST (and also
DA-MULTICAST) can not be solved in 2o(n+m) time.

IV. EXACT SOLUTION

We now present an approach to compute exact solutions
for our problem in super-polynomial time, using a Mixed
Integer Linear Program (MILP). The optimal solutions ob-
tained by our MILP (Program 1) can also serve as a baseline
to compare our heuristics. A summary of parameters used
in our MILP is presented in Table I. We start by briefly
reviewing the variables of our MILP:

• Total congestion. Our goal is to minimize the amount
of congestion in the network, which we denote by C.

• Weight & distance variables. To ensure that we
achieve the shortest paths via the weight variable w(x,y)

that we set for each link, we define an extra integer
variable distx,y that determines the distance between
any pairs of nodes x, y ∈ V .

• Activity variables. We define four activity indicator
binary variables that determine if a link is active or not.
Activity of a link means the (directed) link is being used
as a part of a shortest path, either in general (a(x,y)),
from a source s (asx→y), or between a source s and a
receiver r (as,rx→y).

Program 1: Mixed Integer Linear Program for DA-
MULTICAST

1 Minimize C
2 distx,x = 0 ∀x ∈ V
3 for (x, y) ∈ E # Weight & distance constraints

of a link

4 a(x,y) ∈ {0, 1}
5 w(x,y) ≥ 1
6 distx,y ≤ w(x,y)

7 distx,y ≥ w(x,y) −M · (1− a(x,y))
8 for x, z, y ∈ V # Ensuring shortest distance

between a pair of nodes

9 distx,y ≤ distx,z +distz,y
10 ax,z,y ∈ {0, 1}
11 distx,y ≥ distx,z +distz,y −M · (1− ax,z,y)
12 a(x,y) +

∑
z∈V ax,z,y ≥ 1 ∀x, y ∈ V

13 for ∀s ∈ S # Ensuring an active path from a

source...

14 for x → y ∈ E
15 asx→y ∈ {0, 1}
16 asx→y ≤ a(x,y)
17 asy→x ≤ a(x,y)
18 for ∀r ∈ Rs # ...to a receiver

19 for x → y ∈ E
20 as,rx→y ∈ {0, 1}
21 as,rx→y ≤ asx→y

22
∑

x∈N(s) a
s,r
s→x = 1

23
∑

x∈N(y)\s a
s,r
x→y =

∑
x∈N(y)\Rs as,ry→x

∀y ∈
V \ ({s} ∪Rs)

24
∑

x∈N(r)\r a
s,r
x→r = 1

25 C ≥
∑

s∈S(a
s
x→y ·Bs)− c(x,y) ∀(x, y) ∈ E

26 C ≥ 0

Our MILP aims to minimize congestion occurring in the
given network (Line 1). We first ensure that the distance from
all nodes to themselves is zero in Line 2.

To linearize the computation of the shortest path distance,
the essential part is computing a minimum of two values.
Let us consider v1 and v2 as our variables. We then consider
an auxiliary variable a ∈ {0, 1} and a large value M , bigger
than any possible value that v1 and v2 can ever be assigned
to3. We then can linearize the minimum of v1 and v2 as:

min(v1, v2) ≤ v1, min(v1, v2) ≤ v2

min(v1, v2) ≥ v1 −M · a, min(v1, v2) ≥ v2 −M · (1− a)

We next discuss the main idea behind each block of code
based on each of our three main for loops.

• Link constraints. We first define the binary activity
variable for each link in Line 4. We then ensure that

3In practice, setting M larger than 2n times the maximum possible
capacity is enough.

all of the links have the weight of at least 1 (Line 5).
We also make sure that if a link has been selected as an
active link, then the distance between its two endpoints
should equal its weight (Lines 6 and 7).

• Distance of a pair of nodes. In this part of the code, we
select the shortest path among all paths between nodes x
and y, following the shortest path property

dist(x, y) = min(dist(x, y),dist(x, z) + dist(z, y))

and applying the linearization of the minimum (see
Lines 9 to 11).

• Active path from a source to a receiver. In this block
of the program, we ensure that there is an active path
from each source to each receiver. In particular, Lines 22
to 24 make sure that this path is unique and unsplittable
from source s to receiver r. Lines 14 to 21 ensure
that this path is part of the shortest path that has been
constrained in the previous blocks of the program.

Furthermore, in Line 12, the underlying paths created by
active parameters ensure reachability between any pairs of
nodes. Finally, Line 25 sets the minimum congestion value
as the least congestion on each link. Congestion on a link is
based on the bandwidth of multicast trees that use this link
minus the capacity of the link.

V. HEURISTICS

We next study how to design demand-aware multicast trees
in large networks, using fast heuristics, and show their effects
in an experimental evaluation.

A. Algorithms

Before going into details of our algorithms, we first revisit
the state-of-the-art demand-oblivious solution to set link
weights and compare them to new, demand-aware algorithms.
Oblivious algorithm. The default practical approach to traf-
fic engineering is to set link weights inversely proportional
to the link capacities. To compare our algorithms with this
strategy, we consider this approach as the first heuristic, by
simply setting the weight of a link (x, y) to w(x,y) =

1
c(x,y)

.
We know that the running time of this algorithm only depends
on the number of edges, i.e., it is in Θ(m).

However, it is known that the outcome of this algorithm
can be far from optimal. Figure 2 shows such an example
with only two paths. This example can be extended, e.g.
by adding more links on the bottom path and then reducing
the capacity of the top link, to generate scenarios that the
congestion can be arbitrarily large. A key observation in
this and similar examples is that the oblivious algorithm
sometimes sets small weights for links that it should not.
This happens because the algorithm is oblivious to demand.

Therefore, we introduce two algorithms that are demand-
aware by design. These two algorithms, DA-Picky and DA-
Hybrid, rely on the idea of finding the largest possible bottle-
neck links: those links that probably result in congestion. We

1

Sender 10 units

2 3

4

Receiver 10 units

10

10

4
10

(a) Outcome of oblivious algorithm

1

Sender 10 units

2 3

4

Receiver 10 units

10

10

4
10

(b) Outcome of our DA algorithms

Figure 2: The above figures show the resulting routes con-
sidering the oblivious and DA algorithms. As you can see in
Figure 2a, on the link between nodes 1 and 4, 10 units of
traffic pass while the link only has 4 units of capacity. This
causes 6 units of congestion. Using our DA algorithms, we
can make a route selection that prevents any congestion from
occurring as shown in Figure 2b.

Algorithm 2: DA-Hybrid

1 Sort all sources by their demand in an descending
manner.

2 for Source s
3 Sort all links by their capacity.
4 while We have less than n− 1 selected links do
5 Select a link that does not create a cycle.
6 Set weights of selected links in the to 1

Bs
.

7 Reduce capacity of selected links by BS .
8 Compute congestion and fall-back to oblivious

algorithm if needed.

first detail the procedure of finding bottleneck links, before
going into details of algorithms.
Bottleneck links. In a (multicast) tree, a bottleneck link is the
link with the smallest capacity. To minimize congestion, an
approach is to find a set of maximum-bottleneck spanning
trees (MBSTs for short), and then overlapping them. To
find a MBST we sort all links by their capacity and then
construct the tree by adding links one by one until we have a
spanning tree, i.e. n−1 links without a cycle. Now, given this
construction, we introduce our first algorithm, DA-Hybrid.
DA-Hybrid algorithm. This algorithm starts by sorting
sources based on their demand. Let s be a source with
bandwidth Bs. We consider that all weights are initially set
to infinity.

We then iteratively find a MBST and set the weights of all
links of the MBST (which have not been assigned weights
before) to 1

Bs
. Furthermore, we reduce the capacity of all

selected links by Bs. We then compute the congestion with
the above weights, and fall back to the oblivious algorithm

Algorithm 3: DA-Picky

1 Sort all sources by their demand in an ascending
manner.

2 for Source s
3 while Not all of its receivers are reachable do
4 Add the link with the smallest weight higher

than the demand of s, with weight one
divided by capacity.

5 if Congestion of a link is bigger than 0 then
6 Add all the remaining links with weight one

divided by capacity.
7 Break.

if the resulting congestion is higher.

For this algorithm, we need to sort the links by capacity
and nodes by their bandwidth once, which takes Θ(m logm).
Then computing MBST from each source takes Θ(m), and
hence for all sources it takes Θ(m|S|), where |S| indicates
the number of sources. Also, the fall-back mechanism re-
quires a running time of at most θ(m) Thus, the total running
time of this algorithm is Θ(m ·max(logm, |S|)).

DA-Picky. In this algorithm, we similarly start by considering
all weights to be infinity and also start at the source with the
highest demand. Furthermore, in each iteration, we first check
if previously set weights are enough to route to receivers
of a source or not (i.e. if there are paths with non-infinity
values). If previous weights were not enough, we add links
with the highest capacity higher than the demand of the
source, assigning weight one divided by their capacity, until
all receivers become reachable. At this point, we compute the
congestion on all links, and if congestion on any of the links
is bigger than 0, we add all the remaining links with weight
one divided by capacity. Algorithm 3 describes a pseudocode
of this algorithm.

For the DA-Picky algorithm we need to sort the demand of
sources and capacity of links once, which requires a running
time of Θ(m · logm). Then in each iteration, we need to
add links one by one and check reachability each time,
which requires a running time of Θ(m · |S|). Hence, the
total running time of this algorithm, similar to DA-Hybrid is
Θ(m ·max(logm, |S|)).

By design, both DA-Hybrid and DA-Picky always ensure
congestion less than equal to the oblivious algorithm. This is
true because when it faces congestion bigger than equal to
zero, it falls back to the oblivious algorithm.

Observation 4. Using weights assigned by DA-Picky, con-
gestion in the system is always less than equal to the
oblivious algorithm.

10 20 30 40 50
Number of nodes

10 5

10 4

10 3

10 2

10 1

100

101

Ru
nn

in
g

tim
e

(s
, l

og
 sc

al
e) MILP

DA-Hybrid
DA-Picky
Oblivious

(a) Running times of algorithms

5 10 15 20 25 30
Number of nodes

1.0

1.2

1.4

1.6

1.8

2.0

Co
ng

es
tio

n
Di

vi
de

d
by

 M
IL

P DA-Hybrid DA-Picky

(b) Approximation value of DA algorithms

Figure 3: Figure 3a shows the running time of our MILP and
three heuristics, with increasing size of the graph generated
by the IGen networks [28]. Running times up to a minute are
shown using a log-ratio. Figure 3b shows the approximation
ratio of our demand-aware algorithms, on instances generated
by IGen.

VI. EXPERIMENTAL EVALUATIONS

In this section we detail our experimental results4. In
particular, we discuss and answer the following questions:
Q1. How long does it take to run our algorithms?
Q2. How well do our algorithms perform compared to

MILP?
Q3. Which algorithm performs better on real-world net-

works?
To answer these questions, we first discuss the network

topologies that we used and the approaches we took to set
relevant parameters. In the end, we discuss the results and
answers to the thee mentioned questions.

4We have open-sourced our code which is accessible via our GitHub
repository.

https://github.com/inet-tub/demaand-aware-multicast
https://github.com/inet-tub/demaand-aware-multicast

Network topologies. In our experiments, we have used vari-
ous real-world and synthetic network topologies in our eval-
uations. Part of our results are based on networks obtained
from The Internet Topology Zoo data set [29] (we call it zoo
topologies from now on). This dataset of networks reflects
real-world topologies. However, the included topologies are
quite small in size. To have a larger variety of network
topologies, we created additional topologies that emulate
real-world scenarios based on the IGen topology generation
tool [28]. Furthermore, to represent smaller networks, we
manually created a mesh topology that is typical for single-
site campus networks [30]. Finally, we use a proprietary data
set of a large European ISP, which we call the “national ISP”
dataset. The set of sources and receivers for each sender were
selected randomly.
Source bandwidth and link capacities To assign the band-
width demand of each source and the capacity of each link,
we have performed the following steps for the respective
topologies.

• Zoo topologies. The bandwidth demands and link ca-
pacities were sampled uniformly at random in the range
from 10 to 100. In our experiments, the relation between
capacity and bandwidth depends on the number of
senders, and it can be adjusted by a ratio parameter.

• IGen. The IGen tool allows us to generate link capac-
ities as well. It differentiates between core and access
links, giving different bandwidths to each link type. We
then sampled the bandwidth of each source uniformly
at random similar to the zoo topologies.

• National ISP network. This dataset contains a capacity
value for each link. To generate the bandwidth required
for each source, we used the gravity model suggested
by Roughan [31]. We were able to use this model
as the population for each node in this data set was
known. Concretely, we set the required demand for two
cities with populations p1 and p2 as p1·p2

f , where f
is a “friction parameter”. As the gravity model gives
bandwidth for pairs of nodes, we then normalize the
bandwidth for each source by taking an average of its
bandwidth to all its receivers.

We point out that our scenarios considered a static band-
width for all sources. We believe that in case of dynamic
changes in the demand, our core algorithm can be adjusted
to respond fast to those changes by ideas suggested by prior
works on dynamic spanning tree computation [32].

A. Results

In this section, we go over the results of our evaluations,
focusing on answering the questions proposed earlier. Our
programs are written in python 3.10, benefiting from net-
workx [33], gurobipy [34], and Matplotlib [35] libraries.
They were executed on a machine with Intel® Xeon® CPU
E5-1620 CPU with a clock frequency of 3.60GHz, and 64GB
RAM. In our evaluations, given the inherent randomness of
input generations, we repeat all instances at least 10 times.

National ISP Campus network
Topologies

0.95

0.96

0.97

0.98

0.99

1.00

Co
st

 d
iv

id
ed

 b
y

ob
liv

io
us

DA-Hybrid
DA-Picky

(a) National and campus networks.

The Internet Topology Zoo Networks
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Co
ng

es
tio

n
Di

vi
de

d
by

 O
bl

iv
io

us

DA-Picky DA-Hybrid

(b) Performance compared to oblivious

Figure 4: Figure 4a Shows the average cost over multiple
runs on the national ISP data with real-world capacities
and bandwidth requirements created using the gravity model
based on population and a campus network with unit link
capacities and bandwidth requirements sampled uniformly at
random. Figure 4b shows the (multiplicative) approximation
factor of the algorithms compared to the optimal solutions
computed by the MILP for various topologies from the
Topology Zoo [29] that are small enough to run our MILP
on. Cases where the algorithms computed an optimal solution
are omitted.

A1. Running time. Given the wide flexibility of the IGen
dataset, here we report the running time of our algo-
rithms on graphs with an increasing number of nodes,
in a log-plot. As expected, the running time of MILP
grows exponentially and is significantly larger than the
rest. In our experiments, the DA-Picky has a running
time similar to the oblivious approach. We believe this
could be due to the fast fall-back mechanism that this
algorithm has, compared to DA-Hybrid. Both heuristics
provide good performance in practice, as shown in
Figure 3a, and as we show later, we saw a trade-off

between the running time and performance of our two
demand-aware algorithms.

A2. Approximation ratio. For this experiment, we also
relied on IGen topologies. As can be seen in Figure 3b,
DA-Hybrid performs slightly better than DA-Picky al-
gorithm. On the other hand, the approximation ratio
of both algorithms grows. This behavior is expected,
since the MILP is able to explore a wider range of
possible weight assignments, and by our theoretical
results that showed finding an approximation algorithm
is not possible, even in restricted cases.

A3. Real-world networks. We observe that our DA-Hybrid
algorithm provides better average congestion over mul-
tiple runs on the national ISP data set as can be seen in
Figure 4a. Considering a large variant of Zoo topologies,
we see in Figure 4b that DA-Hybrid produces solutions
that in most cases out-perform the DA-Picky. We report
that we have tested this setup for a wide range of
bandwidth-capacity ratios, and in our tests, we saw
similar results to what is depicted in the figure.

VII. CONCLUSION

This paper was focused on IP multicast, and the possibil-
ities and challenges of incorporating the senders’ bandwidth
requirement into route selection algorithms of an IP multicast
instance. Our first result indicates that finding the optimal
link weights for a multicast instance is NP-hard, even for
cases that are restricted to binary weights. We then proposed
efficient solutions based on a connection to maximum-
bottleneck spanning trees (MBST). We further conducted
experiments on a wide variety of inputs, showing benefits
of our demand-aware algorithms compared to the traditional
demand-oblivious algorithm.

Overall, we have shown that taking the easily accessible
and thus far unutilized information of sender bandwidth
demands into account when constructing multicast trees can
help to reduce the overall congestion occurring inside a
network. As a future work we aim to go beyond static
topologies, giving flexibility for senders or receivers to
join dynamically, in an online manner. In such a case, re-
construction of all trees should be done more adaptively. We
also plan to further explore approximation algorithms for our
problem using randomized approaches.

REFERENCES

[1] M. Hu, J. Li, C. Cai, T. Deng, W. Xu, and Y. Dong, “Software defined
multicast for large-scale multi-layer LEO satellite networks,” IEEE
Trans. Netw. Serv. Manag., 2022.

[2] M. Zhang, “The design of multimedia multicast system in campus
network based on three-tier architecture,” in ACM ICMSS, 2021.

[3] K. P. Birman, “A review of experiences with reliable multicast,” Softw.
Pract. Exper., 1999.

[4] L. Giuliano, C. Lenart, and R. Adam, “TreeDN: Tree-Based
Content Delivery Network (CDN) for Live Streaming to Mass
Audiences,” RFC 9706, Jan. 2025. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9706

[5] I. Wijnands, E. C. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“Multicast using bit index explicit replication (BIER),” RFC, 2017.

[6] B. Fenner, M. J. Handley, H. Holbrook, I. Kouvelas, R. Parekh,
Z. Zhang, and L. Zheng, “Protocol independent multicast - sparse mode
(PIM-SM): protocol specification (revised),” RFC, 2016.

[7] J. D. Boeck, B. Fortz, and S. Schmid, “The case for stochastic online
segment routing under demand uncertainty,” in IFIP Networking, 2023.

[8] M. Parham, T. Fenz, N. Süss, K. Foerster, and S. Schmid, “Traffic
engineering with joint link weight and segment optimization,” in ACM
CoNEXT, 2021.

[9] A. Brundiers, T. Schüller, and N. Aschenbruck, “Tactical traffic
engineering with segment routing midpoint optimization,” in IFIP
Networking, 2023.

[10] ——, “Preprocess your paths-speeding up linear programming-based
optimization for segment routing traffic engineering,” in IFIP Network-
ing, 2024.

[11] M. Henzinger, A. Paz, A. Pourdamghani, and S. Schmid, “The
augmentation-speed tradeoff for consistent network updates,” in ACM
SOSR, 2022.

[12] S. Agarwal, M. S. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in IEEE INFOCOM, 2013.

[13] N. Feamster, J. Rexford, and E. W. Zegura, “The road to SDN: an
intellectual history of programmable networks,” Comput. Commun.
Rev., 2014.

[14] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with
equal-cost-multipath: An algorithmic perspective,” IEEE/ACM Trans.
Netw., 2017.

[15] M. Rost and S. Schmid, “Virtucast: Multicast and aggregation with in-
network processing: An exact single-commodity algorithm,” in Princi-
ples of Distributed Systems: 17th International Conference, OPODIS
2013, Nice, France, December 16-18, 2013. Proceedings 17. Springer,
2013, pp. 221–235.

[16] B. Fortz and M. Thorup, “Increasing internet capacity using local
search,” Comput. Optim. Appl., 2004.

[17] R. Ramanathan, “Multicast tree generation in networks with asymmet-
ric links,” IEEE/ACM Trans. Netw., 1996.

[18] M. S. Kodialam, T. V. Lakshman, and S. Sengupta, “Online multicast
routing with bandwidth guarantees: a new approach using multicast
network flow,” IEEE/ACM Trans. Netw., 2003.

[19] C. P. Low and N. Wang, “An efficient algorithm for group multicast
routing with bandwidth reservation,” Comput. Commun., vol. 23,
no. 18, pp. 1740–1746, 2000.

[20] N. Wang and G. Pavlou, “Traffic engineered multicast content delivery
without MPLS overlay,” IEEE Trans. Multim., 2007.

[21] M. Franke, J. Holland, and S. Schmid, “MCQUIC - A multicast
extension for QUIC,” in NCA, 2024.

[22] L. Georgiadis, “Bottleneck multicast trees in linear time,” IEEE
Commun. Lett., 2003.

[23] R. Cohen and G. Kaempfer, “A unicast-based approach for streaming
multicast,” in IEEE INFOCOM. IEEE Comptuer Society, 2001.

[24] A. Young, J. Chen, Z. Ma, A. Krishnamurthy, L. L. Peterson, and
R. Wang, “Overlay mesh construction using interleaved spanning
trees,” in IEEE INFOCOM, 2004.

[25] M. Kucharzak and K. Walkowiak, “Modeling and optimization of
maximum flow survivable overlay multicast with predefined routing
trees,” Telecommun. Syst., 2014.

[26] G. Rodolakis, A. Laouiti, P. Jacquet, and A. M. Naimi, “Multicast
overlay spanning trees in ad hoc networks: Capacity bounds, protocol
design and performance evaluation,” Comput. Commun., 2008.

[27] M. Middendorf and F. Pfeiffer, “On the complexity of the disjoint
paths problems,” Combinatorica, 1993.

[28] B. Quoitin, V. V. den Schrieck, P. François, and O. Bonaventure, “Igen:
Generation of router-level internet topologies through network design
heuristics,” in IEEE ITC, 2009.

[29] S. Knight, H. X. Nguyen, N. Falkner, R. A. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE JSAC, 2011.

[30] M. N. B. Ali, M. E. Hossain, and M. M. Parvez, “Design and
implementation of a secure campus network,” IJETAE, 2015.

[31] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
Comput. Commun. Rev., 2005.

[32] C. Cheng, I. A. Cimet, and S. P. R. Kumar, “A protocol to maintain a
minimum spanning tree in a dynamic topology,” in ACM SIGCOMM,
1988.

https://www.rfc-editor.org/info/rfc9706
https://www.rfc-editor.org/info/rfc9706

[33] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, 2008.

[34] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[35] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Comput. Sci.
Eng., 2007.

[36] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

APPENDIX

A. Proof of Theorem 2

Proof. We present a reduction from VERTEX-DISJOINT
PATHS on graphs with maximum degree three where all
terminal vertices have degree two.

Hence, let I = (G = (V,E), (s1, t1), (s2, t2), . . . , (sk, tk))
be an instance and let T = {s1, s2, . . . , sk, t1, t2, . . . , tk}
be the set of terminal vertices. We construct an equivalent
instance of DA-MULTICAST as follows. We start by
replacing each edge {u, v} ∈ E by two directed arcs (u, v)
and (v, u). We then set ca = 1 for each arc a and C = 0.
Next, we set S = T , R = T , Rsi = {ti}, Rti = {si}
and bs = 1 for each vertex s ∈ T . This concludes the
construction. Since the reduction can clearly be computed in
polynomial time, it remains to show the correctness. To this
end, assume that I is a yes-instance of VERTEX-DISJOINT
PATHS. Then, there exist a set of k vertex-disjoint paths,
one path Pi between each pair (si, ti). Setting the weight
of all arcs (u, v) and (v, u) for which {u, v} appears in a
path Pi to 1 and the weight of all other arcs to n, the unique
shortest path from si to ti has length at most n− 1. Hence,
each source si will only send data via the path Pi and each
source ti will only use the reverse edges of Pi. Since no
two paths Pi and Pj share an arc, it holds for each arc a
that∑

s∈S

(bs · max
r∈Rs

1a∈Ps,r) ≤
∑
s∈S

1a∈Ps,r ≤ 1 ≤ ca + C.

That is, the constructed instance of DA-MULTICAST is a
yes-instance.

For the other direction, assume that the constructed in-
stance of our problem, DA-MULTICAST, is a yes-instance.
Then, we can assign weights to all arcs such that for all i ̸= j,
there is a unique shortest paths Qi from si to ti and a unique
shortest path Q′

i from ti to si. Note that Qi is the reverse
of Q′

i since the shortest path is unique and each path has
the same length as its reverse since w(u,v) = w(v,u) for all
arcs (u, v). Moreover for each pair i ̸= j, it holds that Qi

does not share an arc with Qj or Q′
j since such an intersec-

tion would lead to congestion at least one. Hence, the path Pi

between si and ti corresponding to Qi in G is edge-disjoint
from the path Pj between sj and tj in G corresponding
to Qj . Note that in (undirected) graphs of maximum degree
three it holds for any four vertices s1, s2, t1, t2 that if these
vertices all have degree at most two, then any s1-t1-path P is
edge-disjoint from any s2-t2-path Q if and only if P and Q
are vertex-disjoint. Thus, Pi and Pj are vertex-disjoint. Since

this holds for all pairs i ̸= j, the instance I of PLANAR
VERTEX-DISJOINT PATHS is a yes-instance. This concludes
the proof.

B. Proof of Proposition 2.

Proof. We reduce from BIN PACKING. Here, we are given
a multiset X of integers and two integers k and B. The
question is whether X can be partitioned into k multisets
such that the sum of integers in each part of the partition
is at most B. It is known that BIN PACKING remains
NP-hard even if the sum of integers in X equals k · B
and all integers are encoded in unary [36]. For a given
instance I = (X = {x1, x2, . . . , xn}, k, B) of BIN PACKING
with the mentioned restrictions, we construct an equivalent
instance of DA-MULTICAST as follows. We start with a
source si for each element xi of X and a single re-
ceiver r. Next, we set bsi = xi and Rsi = {r} for each
source si and C = 0. We continue by constructing G
by adding vertices vj for each j ∈ [k]. The set of arcs
in G is {(si, vj), (vj , si), (vj , r), (r, vj) | i ∈ [n] ∧ j ∈ [k]}.
The capacities of all arcs is B.

Since the instance can clearly be computed in polynomial
time, it remains to show that the two instances are equivalent.
To this end, first assume that I is a yes-instance. Then,
there exists a partition of X into k parts Y1, Y2, . . . , Yk each
summing to exactly B. Setting the lengths of all arcs incident
to r to one and the length of arcs (si, vj), (vj , si) to one
if xi belongs to the jth part and to 2 otherwise leads to a
solution with C = 0 since each arc incident to a source si
has capacity B ≥ xi = bsi and each arc (vj , r) also has
capacity B =

∑
xi∈Yj

xi =
∑

xi∈Yj
bsi .

For the other direction, assume that the constructed
instance of DA-MULTICAST is a yes-instance. Note
that

∑
si
bsi = k ·B and r has exactly k incoming arcs each

with capacity B. Hence, each of these arcs has to be fully
saturated in any solution with C = 0. This implies that there
is a way to partition the sources into k parts Z1, Z2, . . . , Zk

such that for each j ∈ [k] it holds that
∑

si∈Zj
bsi = B. This

corresponds to a solution for I .

https://www.gurobi.com

	Introduction
	Our contribution
	Related work
	Paper outline

	Problem Definition
	Hardness result
	Preliminaries
	Hardness proof
	Adding length bounds

	Exact solution
	Heuristics
	Algorithms

	Experimental Evaluations
	Results

	Conclusion
	References
	Appendix
	Proof of Theorem 2
	Proof of Proposition 2.

