

Matching Augmentation in Demand-Aware Networks

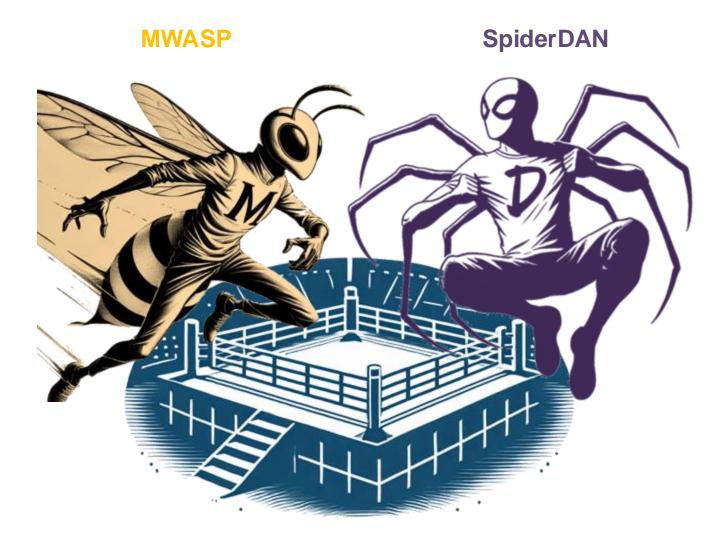
Arash Pourdamghani

Joint work with Aleksander Figiel, Darya Melnyk, André Nichterlein and Stefan Schmid

DISCOGA'25

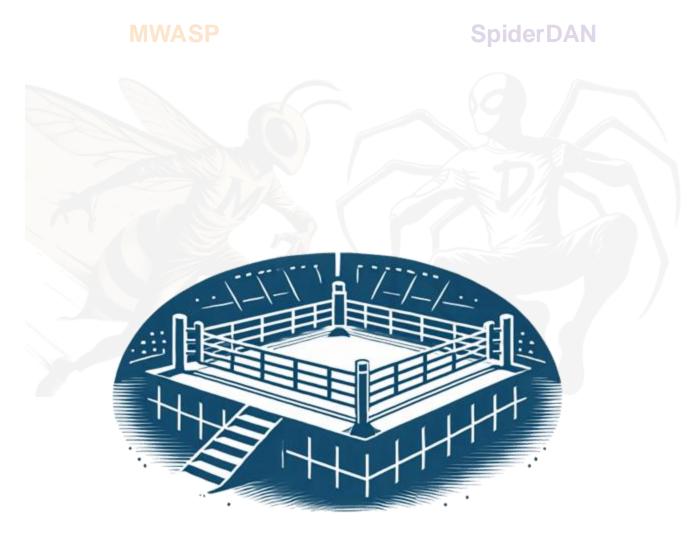
(Based on ALENEX'25 presentations)

Or ... The Tale of

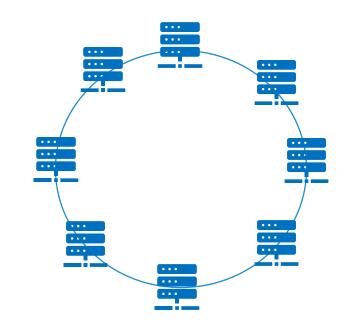


Hybrid Demand-Aware Network Design

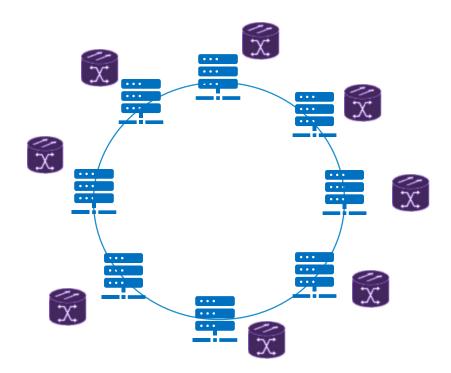
Or ... The Tale of



Hybrid Demand-Aware Network Design

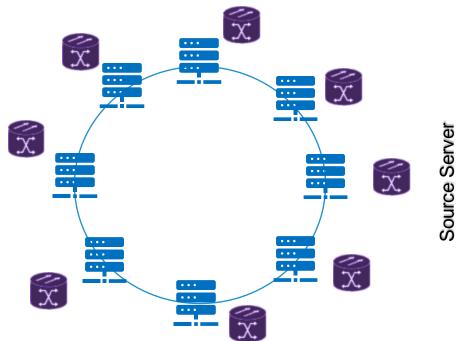


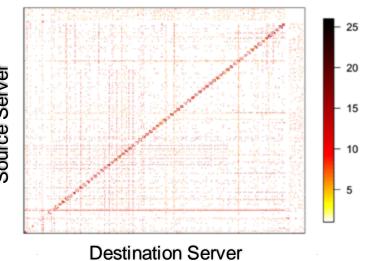
Nodes (e.g., servers in datacenters) want to communicate (e.g., along shortest paths).



Nodes (e.g., servers in datacenters) want to communicate (e.g., along shortest paths).

Hybrid topology: a given fixed topology (here: ring) can be enhanced with additional edges (e.g., realized with an optical switch).

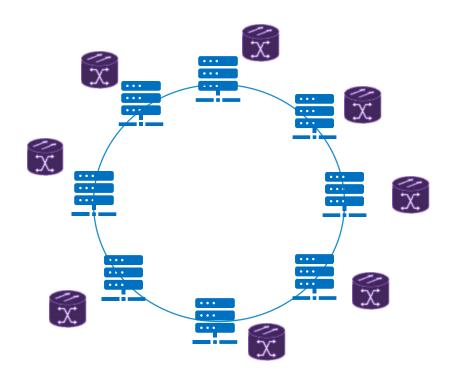


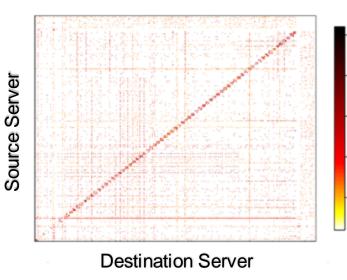


Nodes (e.g., servers in datacenters) want to communicate (e.g., along shortest paths).

Hybrid topology: a given fixed topology (here: ring) can be enhanced with additional edges (e.g., realized with an optical switch). Some of nodes need to communicate to other nodes more frequently.

The Nature of Datacenter Traffic: Measurements & Analysis Microsoft Research



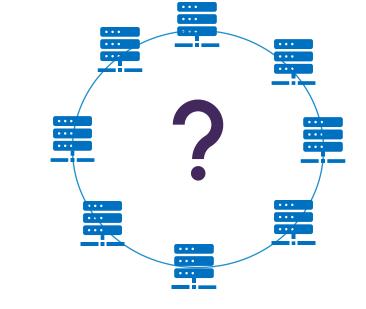


20

15

10

5



Nodes (e.g., servers in datacenters) want to communicate (e.g., along shortest paths).

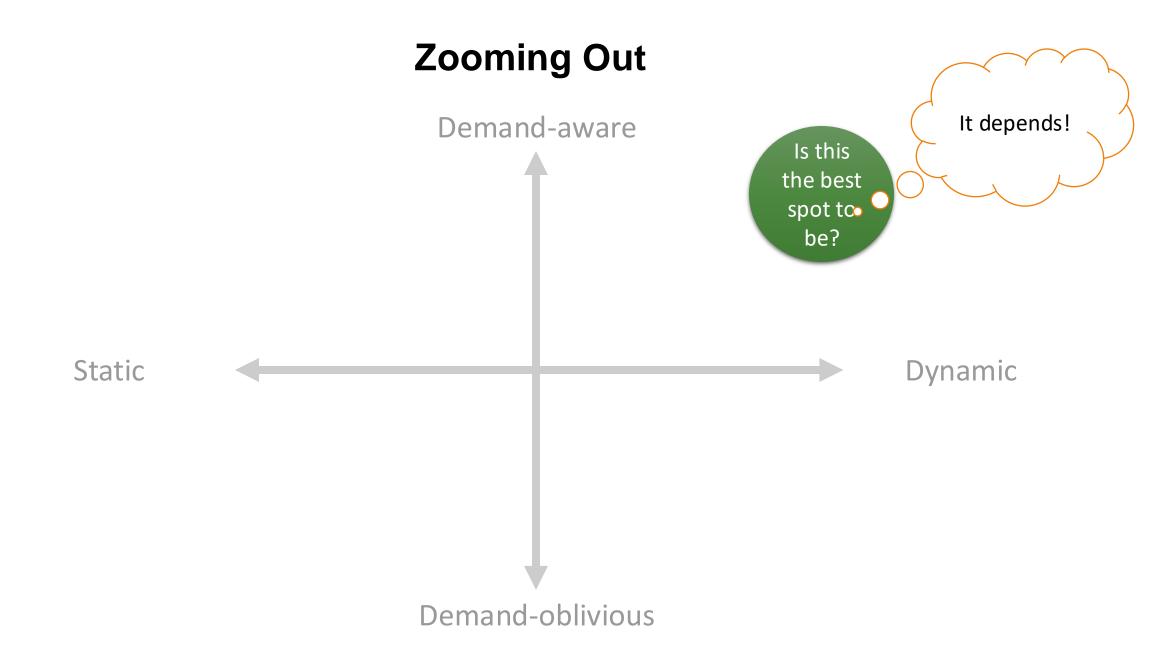
Hybrid topology: a given fixed topology (here: ring) can be enhanced with additional edges (e.g., realized with an optical switch). Some of nodes need to communicate to other nodes more frequently.

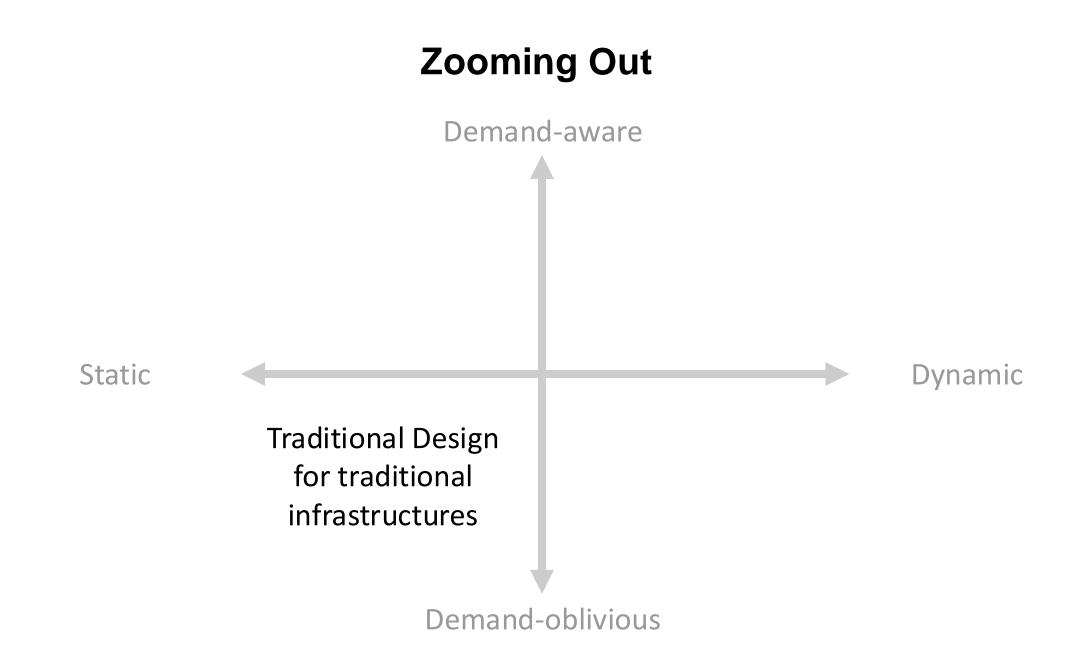
The Nature of Datacenter Traffic: Measurements & Analysis Microsoft Research Finding the best static hybrid topology that minimizes delay/congestion/...

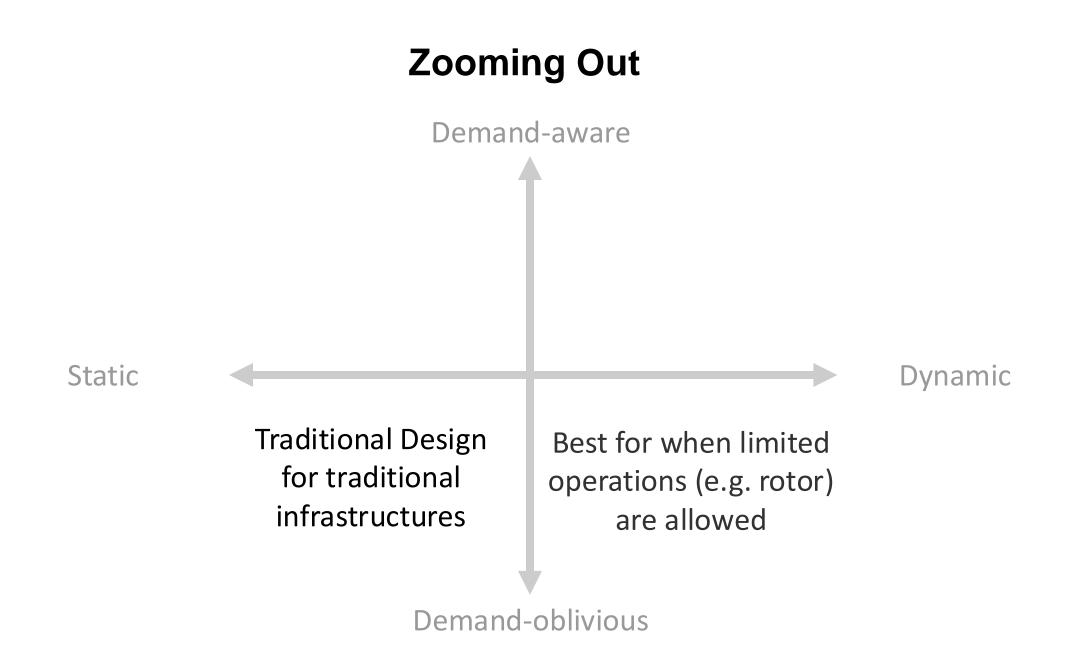
Zooming Out

Static

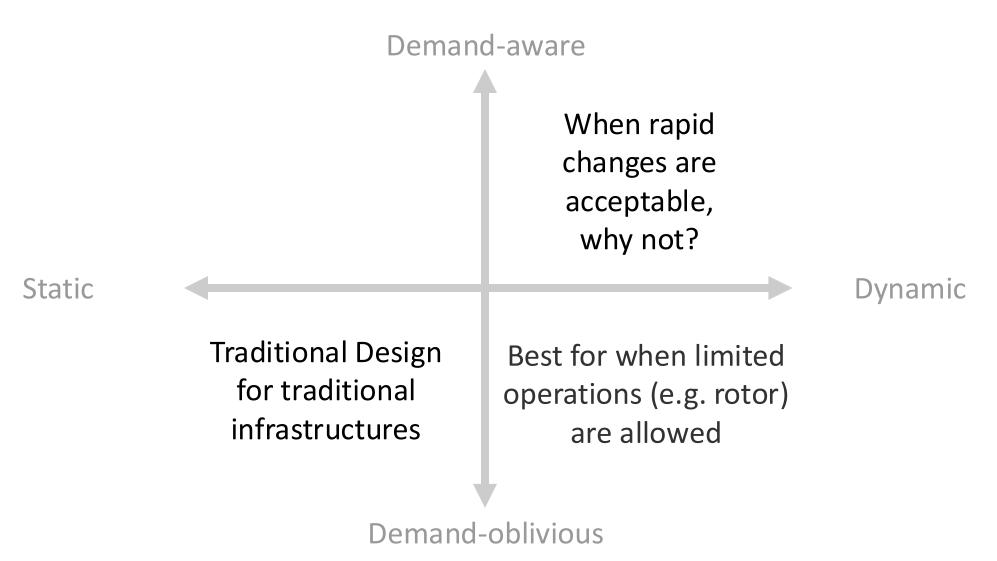
Dynamic



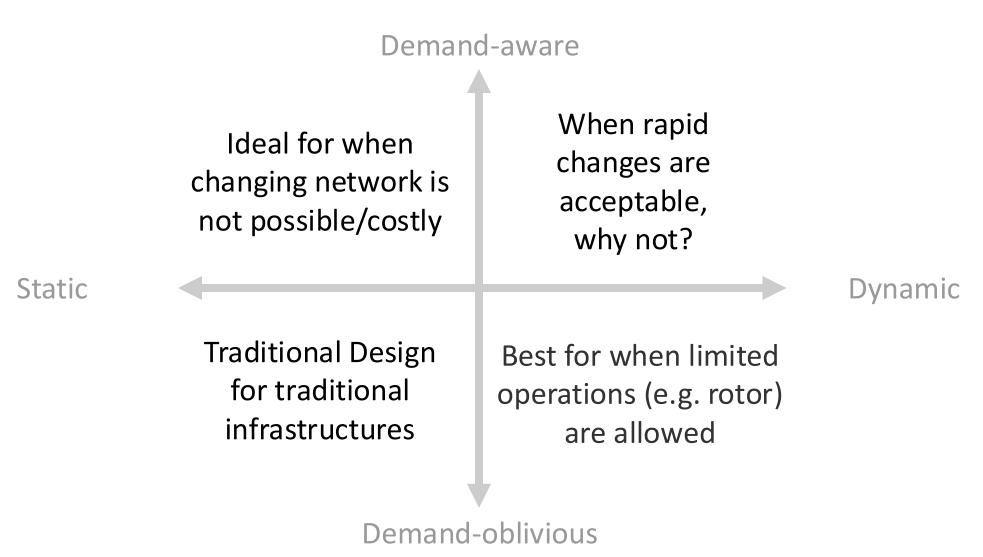


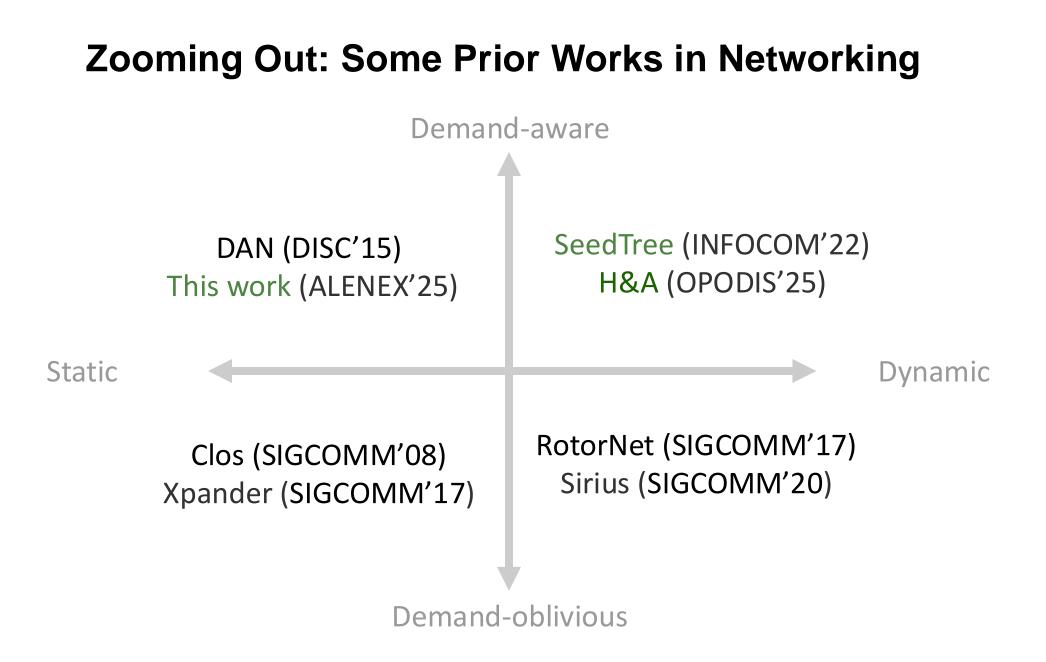


Zooming Out



Zooming Out





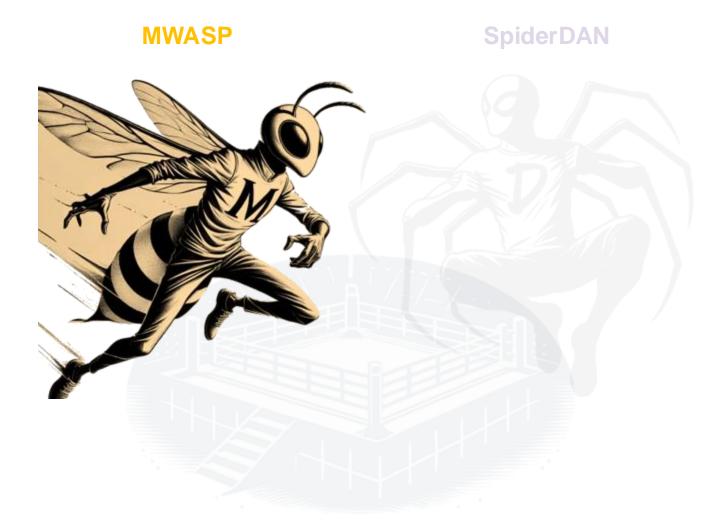
Theoretical Related Work

- Network augmentation for diameter minimization (worst case communication cost):
 - Finding number of edges needed to reduce diameter to *d* is NP-complete [Schoone et al., J. Graph Theory 1987]
 - Lower and upper bounds for cycles [Grigorescu, J. Graph Theory 2003]
 - with degree constraints [Adriaens and Gionis, ICDM 2022]

Theoretical Related Work

- Network augmentation for diameter minimization (worst case communication cost):
 - Finding number of edges needed to reduce diameter to *d* is NP-complete [Schoone et al., J. Graph Theory 1987]
 - Lower and upper bounds for cycles [Grigorescu, J. Graph Theory 2003]
 - with degree constraints [Adriaens and Gionis, ICDM 2022]
- Network augmentation for minimizing average shortest path length:
 - Small world phenomenon [Kleinberg, STOC 2000] and [Watts and Strogatz, Nature 1998]
 - NP-hardness and approximation for adding fixed number of edges [Meyerson and Tagiku, RANDOM 2009]

Or ... The Tale of



Hybrid Demand-Aware Network Design

Formal Model For This Talk

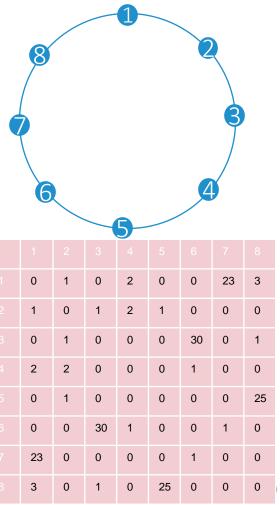
Minimizing Weighted Average Shortest Path length via matching addition (*MWASP*)

Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition (*MWASP*)

Input:

An infrastructure graph G and a demand matrix D.



Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition (*MWASP*)

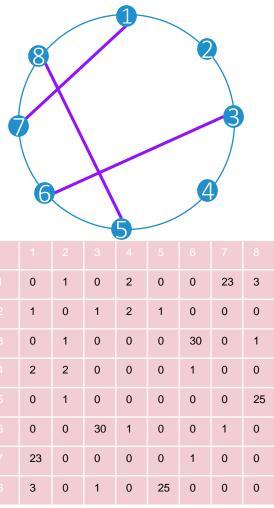
Input:

An infrastructure graph G and a demand matrix D.

Output:

Find a static matching $M \subseteq \binom{V}{2}$ that minimizes: $\Sigma_{u,v \in V} D_{u,v} * dist_{G+M}(u,v)$

in G + M.



NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at most two non-zero elements)

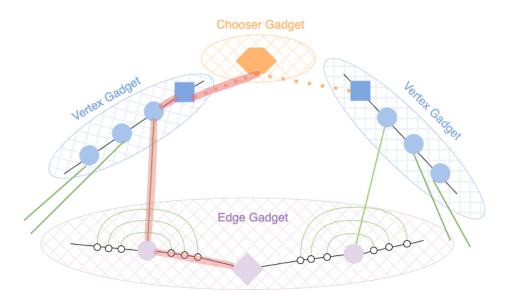
NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at most two non-zero elements)

• Proof idea:

Reduction from Vertex Cover on graphs with maximum degree three.



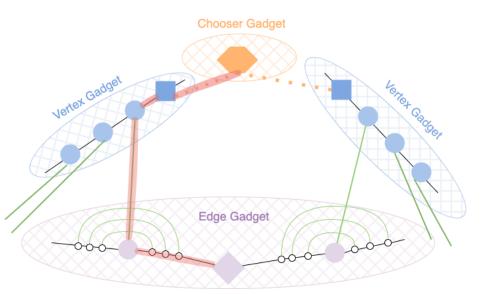
NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at most two non-zero elements)

Proof idea:

Reduction from Vertex Cover on graphs with maximum degree three.

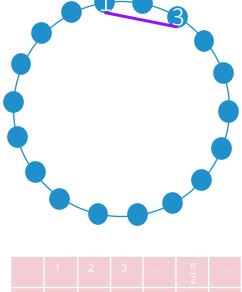


Open Question 1: In our construction, some edges are forced (green edges) to find the optimal results. Can we relax it towards a hardness of approximation?²³

GA1: Connects nodes with the highest demand!?

GA1: Connects nodes with the highest demand!?

(same for a maximum matching algorithm)



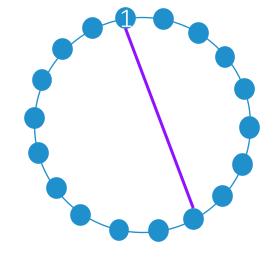
1				$\frac{n}{2}$	
0	0	50	0	49	0
0	0	0	0	0	0
50	0	0	0	0	0
0	0	0	0	0	0
49	0	0	0	0	0
0	0	0	0	0	0

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!? (This idea is common in practice, i.e. a special case of Chord)



	1		3			
1	0	0	50	0	0	0
	0	0	0	0	0	0
	50	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	0	0	0	0

GA1: Connects nodes with the highest demand!?

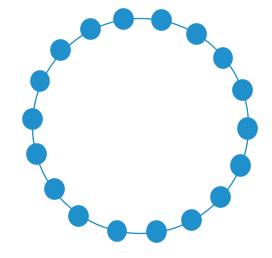
GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?! (no, some pairs can be bridges for others)



1	2	3			
0	0	99	0	0	0
0	0	0	0	10	0
99	0	0	0	0	0
0	1	0	0	0	0
0	10	0	0	0	0
0	1	0	0	0	0

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

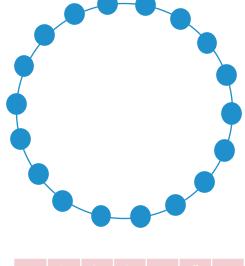
GA4: Algorithms based on submodularity?!

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

GA4: Algorithms based on submodularity?! (no, some pairs can be bridges for others)



	0	0	99	0	0	0
	0	0	0	0	10	0
3	99	0	0	0	0	0
	0	1	0	0	0	0
$\frac{n}{2}$	0	10	0	0	0	0
	0	1	0	0	0	0

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

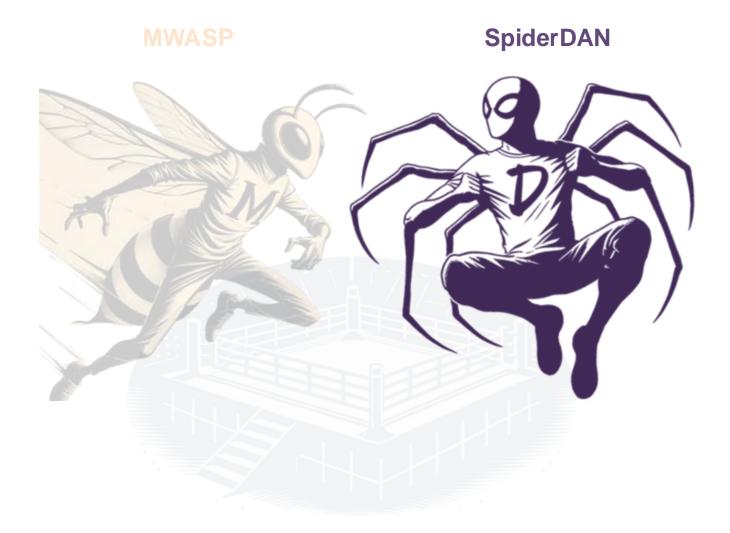
GA3: Merged (somehow!) single-source solutions?!

GA4: Algorithms based on submodularity?!

GA5: For a certain set of inputs?

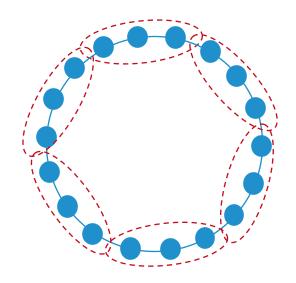
Open Question 2: Is there an approximation algorithm for the general inputs?

Or ... The Tale of



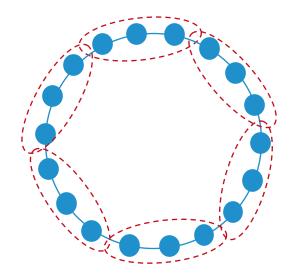
Hybrid Demand-Aware Network Design

Overview of SpiderDAN Algorithm

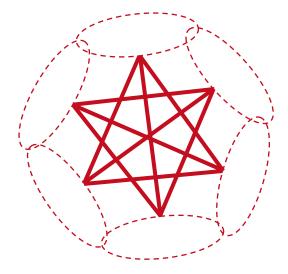


Step 1: Decomposing into super nodes of constant size

Overview of SpiderDAN Algorithm

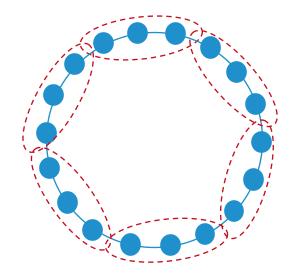


Step 1: Decomposing into super nodes of constant size



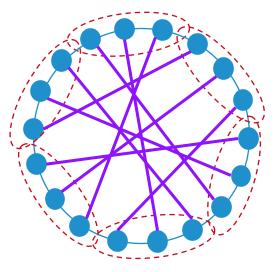
Step 2: Creating a demand-aware constant degree network[#] on top of super nodes

Overview of SpiderDAN Algorithm



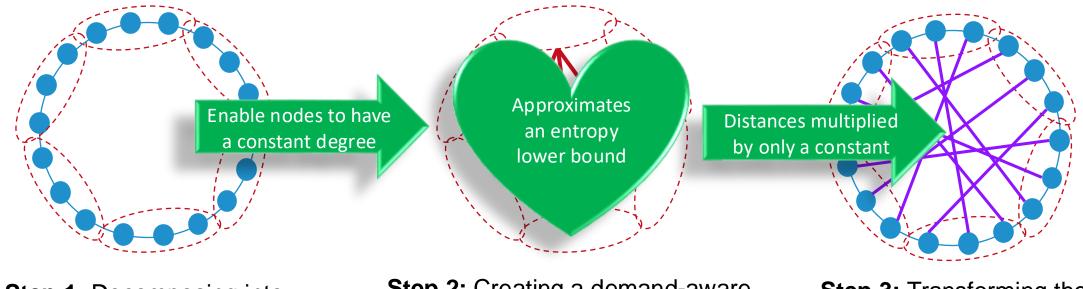
Step 1: Decomposing into super nodes of constant size

Step 2: Creating a demand-aware constant degree network[#] on top of super nodes



Step 3: Transforming the constant degree network to a matching

Constant Approximation Algorithm for Sparse^{*} Demands and Infrastructure Graph with High Diameter



Step 1: Decomposing into super nodes of constant size

Step 2: Creating a demand-aware constant degree network[#] on top of super nodes Step 3: Transforming the constant degree network to a matching

*Low average demand. Sparse demand are motivated by practical use cases. Formalize it shortly.

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).

Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant diameter, and a demand graph of average degree at most $\frac{1}{\alpha}$ (for a constant α) we can compute a matching that is a constant factor approximation for **MWASP**.

Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant diameter, and a demand graph of average degree at most $\frac{1}{\alpha}$ (for a constant α) we can compute a matching that is a constant factor approximation for **MWASP**.

Lemma 1 [sketch] It is possible to decompose G into super nodes of size α , such that nodes corresponding to the same super nodes retain O(1) distance of each other in the infrastructure graph.

Task: Merge nodes into super nodes of size α , while nodes in the same super node have pairwise distance of O(1).

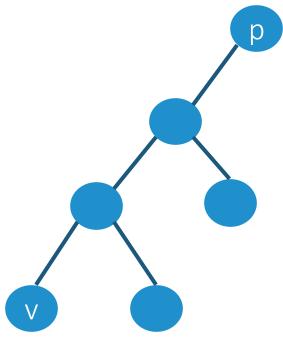
Task: Merge nodes into super nodes of size α , while nodes in the same super node have pairwise distance of O(1).

1. Build spanning tree *T* on the infrastructure graph

Task: Merge nodes into super nodes of size α , while nodes in the same super node have pairwise distance of O(1).

1. Build spanning tree *T* on the infrastructure graph

2. Repeat $\frac{n}{\alpha}$ times: Pick deepest leaf v in TConsider grandparent p at distance α Consider T_p to be subtree rooted at p



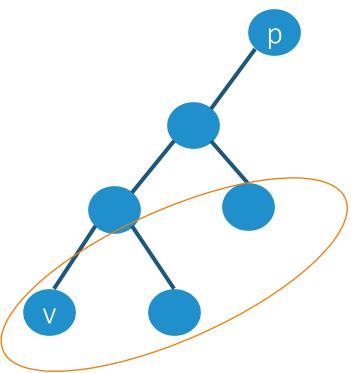
Task: Merge nodes into super nodes of size α , while nodes in the same super node have pairwise distance of O(1).

1. Build spanning tree *T* on the infrastructure graph

2. Repeat $\frac{n}{\alpha}$ times: Pick deepest leaf v in TConsider grandparent p at distance α Consider T_p to be subtree rooted at p

3. Repeat α times:

Pick any leaf u in T_p Add u to to the supernode Remove u



Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant diameter, and a demand graph of average degree at most $\frac{1}{\alpha}$ (for a constant α) we can compute a matching that is a constant factor approximation for **MWASP**.

Lemma 1 [sketch] It is possible to decompose *G* into super nodes of size α , such that nodes corresponding to the same super nodes retain O(1) distance of each other in the infrastructure graph.

Lemma 2 [sketch] On the resulting graph and demand matrix, it is possible to build a DAN of degree at most α , which is a constant factor approximation of an optimal solution [Chen Avin, Kaushik Mondal, and Stefan Schmid, Distributed computing 2020]

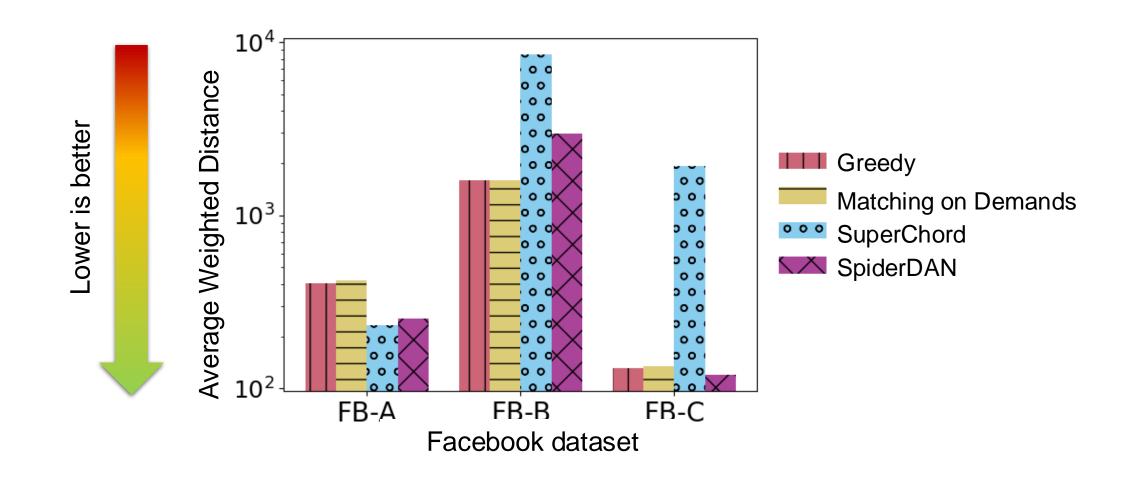
• Greedy: greedily take highest weight demand edge, if possible

- Greedy: greedily take highest weight demand edge, if possible
- Matching on Demand: compute maximum weight matching

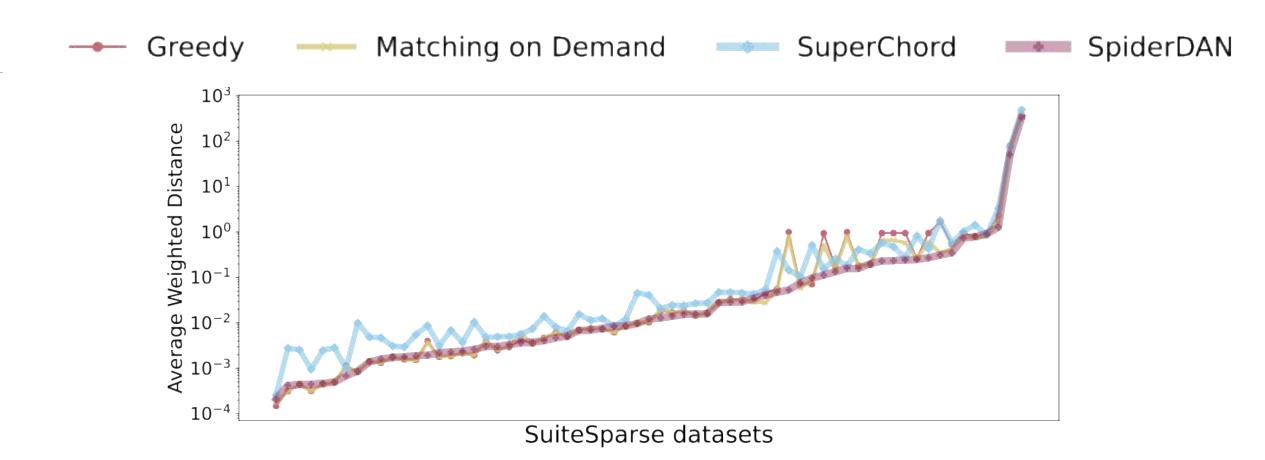
- Greedy: greedily take highest weight demand edge, if possible
- Matching on Demand: compute maximum weight matching
- SuperChord: On a cycle merge x consecutive nodes such that $x = \log(n/x)$. Run Chord protocol on the resulting super graph with degree $\log(n/x)$. Recover matching like in SpiderDAN.

- Greedy: greedily take highest weight demand edge, if possible
- Matching on Demand: compute maximum weight matching
- SuperChord: On a cycle merge x consecutive nodes such that $x = \log(n/x)$. Run Chord protocol on the resulting super graph with degree $\log(n/x)$. Recover matching like in SpiderDAN.
- MIP: $O(n^3)$ binary variables and $O(n^2)$ constraints With Gurobi solves instances up to n = 20 in around an hour.

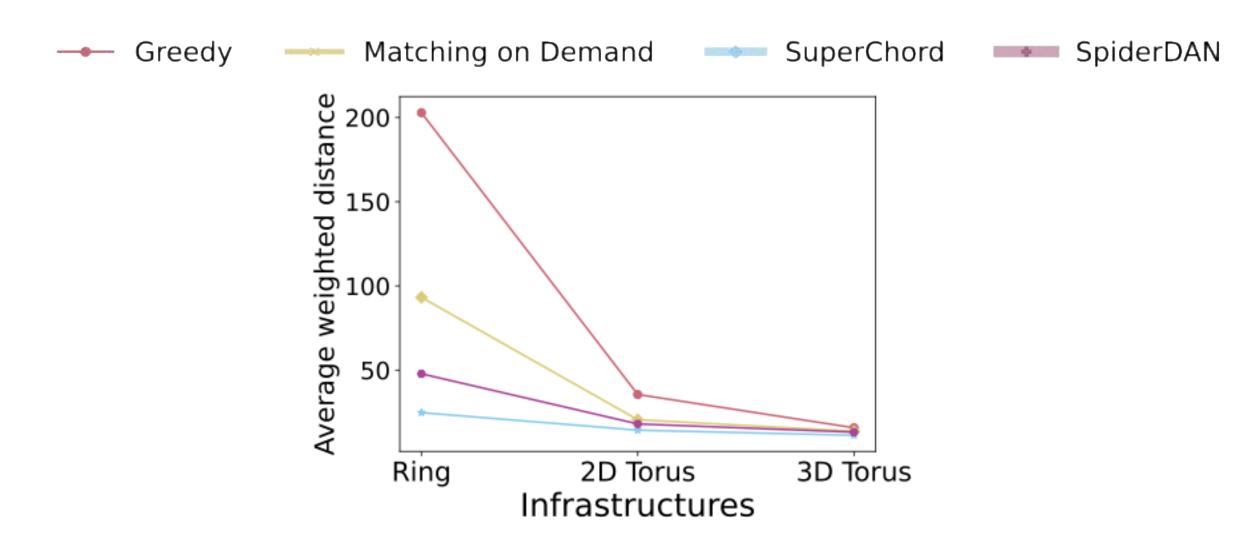
Empirical Results on Facebook Dataset



Empirical Results on SuiteSparse Matrix Collection



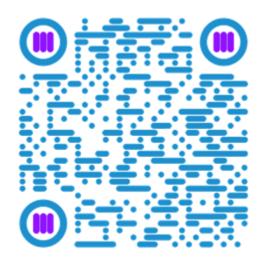
Empirical Results on Different Infrastructure Graphs



Open Questions $\ensuremath{\textcircled{\odot}}$

- 1. Hardness of approximation in the general case?
- 2. Approximation algorithms in the general case?

Read more: https://t.ly/wTbeq



Send me an email: pourdamghani@tu-berlin.de

Follow our group https://www.tu.berlin/en/eninet

