
Matching Augmentation in Demand-

Aware Networks

Arash Pourdamghani
Joint work with Aleksander Figiel, Darya Melnyk, André Nichterlein and Stefan Schmid

DISCOGA’25
(Based on ALENEX’25 presentations)

Or … The Tale of

2

SpiderDANMWASP

Hybrid Demand-Aware Network Design

Or … The Tale of

3

MWASP

Hybrid Demand-Aware Network Design

SpiderDAN

Hybrid Demand-Aware Network Design

Nodes (e.g., servers in datacenters) want to

communicate (e.g., along shortest paths).

4

Nodes (e.g., servers in datacenters) want to

communicate (e.g., along shortest paths).

Hybrid topology: a given fixed topology

(here: ring) can be enhanced with

additional edges (e.g., realized with an

optical switch).

Hybrid Demand-Aware Network Design

5

Some of nodes need to

communicate to other nodes

more frequently.

The Nature of Datacenter Traffic: Measurements &

Analysis
Microsoft Research

S
o
u
rc

e
 S

e
rv

e
r

Destination Server

Nodes (e.g., servers in datacenters) want to

communicate (e.g., along shortest paths).

Hybrid topology: a given fixed topology

(here: ring) can be enhanced with

additional edges (e.g., realized with an

optical switch).

Hybrid Demand-Aware Network Design

6

Finding the best static hybrid

topology that minimizes

delay/congestion/…

Some of nodes need to

communicate to other nodes

more frequently.

The Nature of Datacenter Traffic: Measurements &

Analysis
Microsoft Research

S
o
u
rc

e
 S

e
rv

e
r

Destination Server

Nodes (e.g., servers in datacenters) want to

communicate (e.g., along shortest paths).

Hybrid topology: a given fixed topology

(here: ring) can be enhanced with

additional edges (e.g., realized with an

optical switch).

Hybrid Demand-Aware Network Design

7

Zooming Out

8

Static Dynamic

Zooming Out

9

Static Dynamic

Demand-aware

Demand-oblivious

Is this
the best
spot to

be?

It depends!

Zooming Out

10

Static Dynamic

Demand-aware

Demand-oblivious

Traditional Design
for traditional
infrastructures

Zooming Out

11

Static Dynamic

Demand-aware

Demand-oblivious

Traditional Design
for traditional
infrastructures

Best for when limited
operations (e.g. rotor)

are allowed

Zooming Out

12

Static Dynamic

Demand-aware

Demand-oblivious

Traditional Design
for traditional
infrastructures

Best for when limited
operations (e.g. rotor)

are allowed

When rapid
changes are
acceptable,
why not?

Zooming Out

13

Static Dynamic

Demand-aware

Demand-oblivious

Traditional Design
for traditional
infrastructures

Best for when limited
operations (e.g. rotor)

are allowed

Ideal for when
changing network is
not possible/costly

When rapid
changes are
acceptable,
why not?

Zooming Out: Some Prior Works in Networking

14

Static Dynamic

Demand-aware

Demand-oblivious

Clos (SIGCOMM’08)
Xpander (SIGCOMM’17)

RotorNet (SIGCOMM’17)
Sirius (SIGCOMM’20)

SeedTree (INFOCOM’22)
H&A (OPODIS’25)

DAN (DISC’15)
This work (ALENEX’25)

Theoretical Related Work

• Network augmentation for diameter minimization (worst case communication
cost):

• Finding number of edges needed to reduce diameter to 𝑑 is NP-complete
[Schoone et al., J. Graph Theory 1987]

• Lower and upper bounds for cycles [Grigorescu, J. Graph Theory 2003]

• with degree constraints [Adriaens and Gionis, ICDM 2022]

15

Theoretical Related Work

• Network augmentation for diameter minimization (worst case communication
cost):

• Finding number of edges needed to reduce diameter to 𝑑 is NP-complete
[Schoone et al., J. Graph Theory 1987]

• Lower and upper bounds for cycles [Grigorescu, J. Graph Theory 2003]

• with degree constraints [Adriaens and Gionis, ICDM 2022]

• Network augmentation for minimizing average shortest path length:
• Small world phenomenon [Kleinberg, STOC 2000] and [Watts and Strogatz,

Nature 1998]

• NP-hardness and approximation for adding fixed number of edges [Meyerson and
Tagiku, RANDOM 2009]

16

Or … The Tale of

17

MWASP

Hybrid Demand-Aware Network Design

SpiderDAN

Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition
(MWASP)

18

Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition
(MWASP)

Input:

An infrastructure graph 𝐺 and a demand matrix 𝐷.

19

1

28

37

6 4

5
1 2 3 4 5 6 7 8

1 0 1 0 2 0 0 23 3

2 1 0 1 2 1 0 0 0

3 0 1 0 0 0 30 0 1

4 2 2 0 0 0 1 0 0

5 0 1 0 0 0 0 0 25

6 0 0 30 1 0 0 1 0

7 23 0 0 0 0 1 0 0

8 3 0 1 0 25 0 0 0

Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition
(MWASP)

Input:

An infrastructure graph 𝐺 and a demand matrix 𝐷.

Output:

Find a static matching 𝑀 ⊆ 𝑉
2

 that minimizes:

Σ𝑢,𝑣∈𝑉𝐷𝑢,𝑣 ∗ 𝑑𝑖𝑠𝑡𝐺+𝑀 𝑢, 𝑣

in 𝐺 + 𝑀.

20

1 2 3 4 5 6 7 8

1 0 1 0 2 0 0 23 3

2 1 0 1 2 1 0 0 0

3 0 1 0 0 0 30 0 1

4 2 2 0 0 0 1 0 0

5 0 1 0 0 0 0 0 25

6 0 0 30 1 0 0 1 0

7 23 0 0 0 0 1 0 0

8 3 0 1 0 25 0 0 0

1

28

37

6 4

5

NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at
most two non-zero elements)

21

NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at
most two non-zero elements)

• Proof idea:

Reduction from Vertex Cover on graphs with maximum degree three.

22

NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at
most two non-zero elements)

• Proof idea:

Reduction from Vertex Cover on graphs with maximum degree three.

Open Question 1: In our construction, some edges are forced (green edges) to
find the optimal results. Can we relax it towards a hardness of approximation?

23

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

24

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

(same for a maximum matching algorithm)

25

1
3

1 2 3 … 𝑛

2
…

1 0 0 50 0 49 0

2 0 0 0 0 0 0

3 50 0 0 0 0 0

… 0 0 0 0 0 0

𝑛

2
49 0 0 0 0 0

… 0 0 0 0 0 0

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

26

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

(This idea is common in practice, i.e. a special case of Chord)

27

1

1 2 3 … 𝑛

2
…

1 0 0 50 0 0 0

2 0 0 0 0 0 0

3 50 0 0 0 0 0

… 0 0 0 0 0 0

𝑛

2
0 0 0 0 0 0

… 0 0 0 0 0 0

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

28

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

(no, some pairs can be bridges for others)

29

1 2 3 … 𝑛

2
…

1 0 0 99 0 0 0

2 0 0 0 0 10 0

3 99 0 0 0 0 0

… 0 1 0 0 0 0

𝑛

2
0 10 0 0 0 0

… 0 1 0 0 0 0

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

GA4: Algorithms based on submodularity?!

30

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

GA4: Algorithms based on submodularity?!

(no, some pairs can be bridges for others)

31

1 2 3 … 𝑛

2
…

1 0 0 99 0 0 0

2 0 0 0 0 10 0

3 99 0 0 0 0 0

… 0 1 0 0 0 0

𝑛

2
0 10 0 0 0 0

… 0 1 0 0 0 0

Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

GA4: Algorithms based on submodularity?!

GA5: For a certain set of inputs?

Open Question 2: Is there an approximation algorithm for the general inputs?

32

Or … The Tale of

33

MWASP

Hybrid Demand-Aware Network Design

SpiderDAN

Overview of SpiderDAN Algorithm

34

Step 1: Decomposing into

super nodes of constant size

Step 1: Decomposing into

super nodes of constant size

Overview of SpiderDAN Algorithm

35

Step 2: Creating a demand-aware

constant degree network#

 on top of super nodes

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).

Step 1: Decomposing into

super nodes of constant size

Overview of SpiderDAN Algorithm

36

Step 2: Creating a demand-aware

constant degree network#

 on top of super nodes

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).

Step 3: Transforming the

constant degree network to

a matching

Step 1: Decomposing into

super nodes of constant size

*Low average demand. Sparse demand are motivated by practical use cases. Formalize it shortly.

Constant Approximation Algorithm for Sparse* Demands and
Infrastructure Graph with High Diameter

37

Step 2: Creating a demand-aware

constant degree network#

 on top of super nodes

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).

Step 3: Transforming the

constant degree network to

a matching

Distances multiplied
by only a constant

Approximates
an entropy

lower bound

Enable nodes to have
a constant degree

Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant

diameter, and a demand graph of average degree at most
1

𝛼
 (for a constant 𝛼) we

can compute a matching that is a constant factor approximation for MWASP.

38

Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant

diameter, and a demand graph of average degree at most
1

𝛼
 (for a constant 𝛼) we

can compute a matching that is a constant factor approximation for MWASP.

Lemma 1 [sketch] It is possible to decompose G into super nodes of size 𝛼,
such that nodes corresponding to the same super nodes retain 𝑂 1 distance of
each other in the infrastructure graph.

39

Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super
node have pairwise distance of 𝑂 1 .

40

Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super
node have pairwise distance of 𝑂 1 .

1. Build spanning tree 𝑇 on the infrastructure graph

41

Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super
node have pairwise distance of 𝑂 1 .

1. Build spanning tree 𝑇 on the infrastructure graph

2. Repeat
𝑛

𝛼
 times:

 Pick deepest leaf 𝑣 in 𝑇

 Consider grandparent 𝑝 at distance 𝛼

 Consider 𝑇𝑝 to be subtree rooted at 𝑝

42

v

p

Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super
node have pairwise distance of 𝑂 1 .

1. Build spanning tree 𝑇 on the infrastructure graph

2. Repeat
𝑛

𝛼
 times:

 Pick deepest leaf 𝑣 in 𝑇

 Consider grandparent 𝑝 at distance 𝛼

 Consider 𝑇𝑝 to be subtree rooted at 𝑝

3. Repeat 𝛼 times:

 Pick any leaf 𝑢 in 𝑇𝑝

 Add 𝑢 to to the supernode

 Remove 𝑢

43

v

p

Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant

diameter, and a demand graph of average degree at most
1

𝛼
 (for a constant 𝛼) we

can compute a matching that is a constant factor approximation for MWASP.

Lemma 1 [sketch] It is possible to decompose 𝐺 into super nodes of size 𝛼,
such that nodes corresponding to the same super nodes retain 𝑂 1 distance of
each other in the infrastructure graph.

Lemma 2 [sketch] On the resulting graph and demand matrix, it is possible to
build a DAN of degree at most 𝛼 , which is a constant factor approximation of an
optimal solution [Chen Avin, Kaushik Mondal, and Stefan Schmid, Distributed
computing 2020]

44

Heuristics

• Greedy: greedily take highest weight demand edge, if possible

45

Heuristics

• Greedy: greedily take highest weight demand edge, if possible

• Matching on Demand: compute maximum weight matching

46

Heuristics

• Greedy: greedily take highest weight demand edge, if possible

• Matching on Demand: compute maximum weight matching

• SuperChord: On a cycle merge x consecutive nodes such that 𝑥 = log(𝑛/𝑥).

Run Chord protocol on the resulting super graph with degree log(𝑛/𝑥). Recover

matching like in SpiderDAN.

47

Heuristics

• Greedy: greedily take highest weight demand edge, if possible

• Matching on Demand: compute maximum weight matching

• SuperChord: On a cycle merge x consecutive nodes such that 𝑥 = log(𝑛/𝑥).

Run Chord protocol on the resulting super graph with degree log(𝑛/𝑥). Recover

matching like in SpiderDAN.

• MIP: 𝑂(𝑛3) binary variables and 𝑂(𝑛2) constraints With Gurobi solves instances

up to 𝑛 = 20 in around an hour.

48

Facebook dataset

A
v
e
ra

g
e
 W

e
ig

h
te

d
 D

is
ta

n
c
e

SpiderDAN

SuperChord

Matching on Demands

Greedy

L
o
w

e
r

is
 b

e
tt
e
r

Empirical Results on Facebook Dataset

49

Empirical Results on SuiteSparse Matrix Collection

50

Empirical Results on Different Infrastructure Graphs

51

1. Hardness of approximation in the general case?

2. Approximation algorithms in the general case?

Read more:

https://t.ly/wTbeq Follow our group

https://www.tu.berlin/en/eninet

Send me an email:

pourdamghani@tu-berlin.de

Open Questions ☺

52

	Default Section
	Slide 1
	Slide 2: Or … The Tale of
	Slide 3: Or … The Tale of
	Slide 4: Hybrid Demand-Aware Network Design
	Slide 5: Hybrid Demand-Aware Network Design
	Slide 6: Hybrid Demand-Aware Network Design
	Slide 7: Hybrid Demand-Aware Network Design
	Slide 8: Zooming Out
	Slide 9: Zooming Out
	Slide 10: Zooming Out
	Slide 11: Zooming Out
	Slide 12: Zooming Out
	Slide 13: Zooming Out
	Slide 14: Zooming Out: Some Prior Works in Networking
	Slide 15: Theoretical Related Work
	Slide 16: Theoretical Related Work
	Slide 17: Or … The Tale of
	Slide 18: Formal Model For This Talk
	Slide 19: Formal Model For This Talk
	Slide 20: Formal Model For This Talk
	Slide 21: NP-Hardness
	Slide 22: NP-Hardness
	Slide 23: NP-Hardness
	Slide 24: Then… What About Greedy Algorithm X?
	Slide 25: Then… What About Greedy Algorithm X?
	Slide 26: Then… What About Greedy Algorithm X?
	Slide 27: Then… What About Greedy Algorithm X?
	Slide 28: Then… What About Greedy Algorithm X?
	Slide 29: Then… What About Greedy Algorithm X?
	Slide 30: Then… What About Greedy Algorithm X?
	Slide 31: Then… What About Greedy Algorithm X?
	Slide 32: Then… What About Greedy Algorithm X?
	Slide 33: Or … The Tale of
	Slide 34: Overview of SpiderDAN Algorithm
	Slide 35: Overview of SpiderDAN Algorithm
	Slide 36: Overview of SpiderDAN Algorithm
	Slide 37: Constant Approximation Algorithm for Sparse* Demands and Infrastructure Graph with High Diameter
	Slide 38: Theoretical Guarantee
	Slide 39: Theoretical Guarantee
	Slide 40: Supernode Creation On General Graphs
	Slide 41: Supernode Creation On General Graphs
	Slide 42: Supernode Creation On General Graphs
	Slide 43: Supernode Creation On General Graphs
	Slide 44: Theoretical Guarantee
	Slide 45: Heuristics
	Slide 46: Heuristics
	Slide 47: Heuristics
	Slide 48: Heuristics
	Slide 49: Empirical Results on Facebook Dataset
	Slide 50: Empirical Results on SuiteSparse Matrix Collection
	Slide 51: Empirical Results on Different Infrastructure Graphs
	Slide 52: Open Questions

