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Hybrid Demand-Aware Network Design

Nodes (e.g., servers in datacenters) want to 

communicate (e.g., along shortest paths).
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Some of nodes need to 

communicate to other nodes 

more frequently.
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Finding the best static hybrid 

topology that minimizes 

delay/congestion/… 

Some of nodes need to 

communicate to other nodes 

more frequently.
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Static Dynamic

Demand-aware

Demand-oblivious

Is this 
the best 
spot to 

be?

It depends! 
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Zooming Out
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Static Dynamic

Demand-aware

Demand-oblivious

Traditional Design 
for traditional 
infrastructures

Best for when limited 
operations (e.g. rotor) 

are allowed

Ideal for when 
changing network is 
not possible/costly

When rapid 
changes are 
acceptable, 
why not?



Zooming Out: Some Prior Works in Networking
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Static Dynamic

Demand-aware

Demand-oblivious

Clos (SIGCOMM’08)
Xpander (SIGCOMM’17)

RotorNet (SIGCOMM’17)
Sirius (SIGCOMM’20)

SeedTree (INFOCOM’22)
H&A (OPODIS’25)

DAN (DISC’15) 
This work (ALENEX’25)



Theoretical Related Work

• Network augmentation for diameter minimization (worst case communication
cost):

• Finding number of edges needed to reduce diameter to 𝑑 is NP-complete
[Schoone et al., J. Graph Theory 1987]

• Lower and upper bounds for cycles [Grigorescu, J. Graph Theory 2003]

• with degree constraints [Adriaens and Gionis, ICDM 2022]

15



Theoretical Related Work

• Network augmentation for diameter minimization (worst case communication
cost):

• Finding number of edges needed to reduce diameter to 𝑑 is NP-complete
[Schoone et al., J. Graph Theory 1987]

• Lower and upper bounds for cycles [Grigorescu, J. Graph Theory 2003]

• with degree constraints [Adriaens and Gionis, ICDM 2022]

• Network augmentation for minimizing average shortest path length:
• Small world phenomenon [Kleinberg, STOC 2000] and [Watts and Strogatz,

Nature 1998]

• NP-hardness and approximation for adding fixed number of edges [Meyerson and
Tagiku, RANDOM 2009]
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Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition 
(MWASP)
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Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition 
(MWASP)

Input: 

An infrastructure graph 𝐺 and a demand matrix 𝐷.
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Formal Model For This Talk

Minimizing Weighted Average Shortest Path length via matching addition 
(MWASP)

Input: 

An infrastructure graph 𝐺 and a demand matrix 𝐷.

Output: 

Find a static matching 𝑀 ⊆ 𝑉
2

 that minimizes:

Σ𝑢,𝑣∈𝑉𝐷𝑢,𝑣 ∗  𝑑𝑖𝑠𝑡𝐺+𝑀 𝑢, 𝑣

in 𝐺 +  𝑀.
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NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at 
most two non-zero elements)
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Reduction from Vertex Cover on graphs with maximum degree three.
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NP-Hardness

Theorem 1. MWASP is NP-hard!

(Even if the infrastructure graph is a cycle and every row and column of the demand-matrix has at 
most two non-zero elements)

• Proof idea:

Reduction from Vertex Cover on graphs with maximum degree three.

Open Question 1: In our construction, some edges are forced (green edges) to 
find the optimal results. Can we relax it towards a hardness of approximation?
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Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?
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Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

(same for a maximum matching algorithm)

25

1
3

1 2 3 … 𝑛

2
…

1 0 0 50 0 49 0

2 0 0 0 0 0 0

3 50 0 0 0 0 0

… 0 0 0 0 0 0

𝑛

2
49 0 0 0 0 0

… 0 0 0 0 0 0



Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?
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Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

(This idea is common in practice, i.e. a special case of Chord)
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GA3: Merged (somehow!) single-source solutions?!
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GA4: Algorithms based on submodularity?!
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Then… What About Greedy Algorithm X?

GA1: Connects nodes with the highest demand!?

GA2: Connects nodes which are furthest away!?

GA3: Merged (somehow!) single-source solutions?!

GA4: Algorithms based on submodularity?!

GA5: For a certain set of inputs?

Open Question 2: Is there an approximation algorithm for the general inputs? 
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Overview of SpiderDAN Algorithm
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Overview of SpiderDAN Algorithm
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constant degree network#

 on top of super nodes

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).
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Overview of SpiderDAN Algorithm
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Step 2: Creating a demand-aware 

constant degree network#

 on top of super nodes

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).
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Step 1: Decomposing into

super nodes of constant size

*Low average demand. Sparse demand are motivated by practical use cases. Formalize it shortly.

Constant Approximation Algorithm for Sparse* Demands and 
Infrastructure Graph with High Diameter
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Step 2: Creating a demand-aware 

constant degree network#

 on top of super nodes

#Chen Avin, Kaushik Mondal, and Stefan Schmid. 2020. Demand-aware network designs of bounded degree. Distributed Computing (2020).

Step 3: Transforming the 

constant degree network  to 

a matching

Distances multiplied 
by only a constant

Approximates 
an entropy 

lower bound 

Enable nodes to have 
a constant degree



Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant 

diameter, and a demand graph of average degree at most 
1

𝛼
 (for a constant 𝛼) we 

can compute a matching that is a constant factor approximation for MWASP.
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Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant 

diameter, and a demand graph of average degree at most 
1

𝛼
 (for a constant 𝛼) we 

can compute a matching that is a constant factor approximation for MWASP.

Lemma 1 [sketch] It is possible to decompose G into super nodes of size 𝛼, 
such that nodes corresponding to the same super nodes retain 𝑂 1  distance of 
each other in the infrastructure graph.
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Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super 
node have pairwise distance of 𝑂 1 .
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Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super 
node have pairwise distance of 𝑂 1 .

1. Build spanning tree 𝑇 on the infrastructure graph
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Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super 
node have pairwise distance of 𝑂 1 .

1. Build spanning tree 𝑇 on the infrastructure graph

2. Repeat 
𝑛

𝛼
 times: 

 Pick deepest leaf 𝑣 in 𝑇 

 Consider grandparent 𝑝 at distance 𝛼

 Consider 𝑇𝑝 to be subtree rooted at 𝑝
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Supernode Creation On General Graphs

Task: Merge nodes into super nodes of size 𝛼, while nodes in the same super 
node have pairwise distance of 𝑂 1 .

1. Build spanning tree 𝑇 on the infrastructure graph

2. Repeat 
𝑛

𝛼
 times: 

 Pick deepest leaf 𝑣 in 𝑇 

 Consider grandparent 𝑝 at distance 𝛼

 Consider 𝑇𝑝 to be subtree rooted at 𝑝

3. Repeat 𝛼 times: 

 Pick any leaf 𝑢 in 𝑇𝑝 

 Add 𝑢 to to the supernode 

 Remove 𝑢 
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Theoretical Guarantee

Theorem 2. Given any connected infrastructure graph with non-constant 

diameter, and a demand graph of average degree at most 
1

𝛼
 (for a constant 𝛼) we 

can compute a matching that is a constant factor approximation for MWASP.

Lemma 1 [sketch] It is possible to decompose 𝐺 into super nodes of size 𝛼, 
such that nodes corresponding to the same super nodes retain 𝑂 1  distance of 
each other in the infrastructure graph.

Lemma 2 [sketch] On the resulting graph and demand matrix, it is possible to 
build a DAN of degree at most 𝛼 , which is a constant factor approximation of an 
optimal solution [Chen Avin, Kaushik Mondal, and Stefan Schmid, Distributed 
computing 2020]
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Heuristics

• Greedy: greedily take highest weight demand edge, if possible 
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Heuristics

• Greedy: greedily take highest weight demand edge, if possible 

• Matching on Demand: compute maximum weight matching 
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Heuristics

• Greedy: greedily take highest weight demand edge, if possible 

• Matching on Demand: compute maximum weight matching 

• SuperChord: On a cycle merge x consecutive nodes such that 𝑥 =  log(𝑛/𝑥). 

Run Chord protocol on the resulting super graph with degree log(𝑛/𝑥). Recover 

matching like in SpiderDAN. 
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Heuristics

• Greedy: greedily take highest weight demand edge, if possible 

• Matching on Demand: compute maximum weight matching 

• SuperChord: On a cycle merge x consecutive nodes such that 𝑥 =  log(𝑛/𝑥). 

Run Chord protocol on the resulting super graph with degree log(𝑛/𝑥). Recover 

matching like in SpiderDAN. 

• MIP: 𝑂(𝑛3) binary variables and 𝑂(𝑛2) constraints With Gurobi solves instances 

up to 𝑛 = 20 in around an hour.
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Empirical Results on Facebook Dataset
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Empirical Results on SuiteSparse Matrix Collection
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Empirical Results on Different Infrastructure Graphs

51



1. Hardness of approximation in the general case? 

2. Approximation algorithms in the general case?

Read more:

https://t.ly/wTbeq Follow our group

https://www.tu.berlin/en/eninet

Send me an email:

pourdamghani@tu-berlin.de

Open Questions ☺

52
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