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Abstract

Graph augmentation is a fundamental and well-studied

problem that arises in network optimization. We consider

a new variant of this model motivated by reconfigurable

communication networks. In this variant, we consider a

given physical network and the measured communication

demands between the nodes. Our goal is to augment the

given physical network with a matching, so that the shortest

path lengths in the augmented network, weighted with the

demands, are minimal. We prove that this problem is NP-

hard, even if the physical network is a cycle. We then

use results from demand-aware network design to provide

a constant-factor approximation algorithm for adding a

matching in case that only a few nodes in the network

cause almost all the communication. For general real-world

communication patterns, we design and evaluate a series

of heuristics that can deal with arbitrary graphs as the

underlying network structure. Our algorithms are validated

experimentally using real-world traces (from e.g., Facebook)

of data centers.

1 Introduction

This paper considers a network augmentation problem
that is motivated by emerging data center technolo-
gies [16, 26, 42, 44]. The idea of these technologies is to
enable demand-aware networks by using reconfigurable
optical switches, on top of an existing demand-oblivious
data center topology based on electrical switches. An
optical circuit switch allows one to directly connect (i.e.,
match) each data center rack to at most one other rack
via an optical link, thus forming a (perfect) matching on
top of an existing electrical network [15, 36, 47]. This
allows to reduce the number of hops traversed by com-
municated bit, and hence increases the bandwidth. See
for example Jupiter Evolving for a recent solution de-
ployed by Google [42].

From a theoretical perspective, network augmenta-
tion has been studied under two optimization criteria
so far: minimizing the diameter of the network (i.e.,
the worst-case communication cost) [1, 2, 7, 8, 22], and
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minimizing average shortest path length between any
two nodes [21, 31, 37, 39, 40, 48]. However, previous
work has mostly assumed that the communication de-
mand between the nodes is evenly distributed, i.e., that
any two nodes are equally likely to communicate, inde-
pendent of their role in the network. We drop this as-
sumption in this work and arrive at the following graph
problem: Given a graph (the existing infrastructure net-
work) and a demand matrix (encoding the communica-
tion demand between all pairs of nodes), our goal is to
compute a matching to add so that the weighted av-
erage path length in the augmented network is mini-
mized where the weights are given by the demand ma-
trix. We call this problem Minimizing Weighted Av-
erage Shortest Path Length via Matching Ad-
dition (MWASP), see Section 2 for a formal definition.
This approach can be used to reconfigure the network
after some time to adjust to the new demand.

Our Contribution. We analyze the complexity
and approximability of MWASP . We start by showing
that it is NP-hard, already if the underlying infrastruc-
ture graph is a ring and each node communicates to at
most two other nodes (i. e., the demand matrix is ex-
tremely sparse).

We further propose a constant-factor approxima-
tion algorithm for MWASP on connected underlying in-
frastructure graphs of constant maximum degree. This
algorithm groups small segments of nodes that are in
close proximity into super-nodes and then connects
these super-nodes with a known construction from de-
mand aware networks [4]. The idea behind the grouping
is that nodes can help their neighbors of high demand
connect to other high-demand nodes. This construc-
tion limits us to highly skewed demand matrices where
only a few nodes in the network cause almost all the
communication.

We consider synthetically generated communication
demands, as well as real-world datasets; in particular
a dataset collected from Facebook [43]. We further
test our algorithms on various infrastructure graphs,
including symmetric structures like rings, 2D and the
3D torus, as they are often used in distributed archi-
tectures [35]. Our heuristics and approximation prove



highly efficient and effective on these datasets: They dis-
play good approximation factors on the small synthetic
instances where we do know the optimum. Moreover,
the approximation and our heuristics scale well on the
real-world datasets.

Related Work. Graph augmentation has been
widely studied from the perspective of optimizing com-
munication in a peer-to-peer network. One goal is to
minimize the diameter of a graph [8], i.e., to improve the
worst-case cost of routing. Schoone et al. [45] showed
that the problem of minimizing the number of edges
that one needs to add to a graph in order to reduce
its diameter to d is NP-complete. Following this result,
lower and upper bounds on the number of additional
edges have been derived for cycles [2, 7, 22], paths [7],
(t+1)-edge connected graphs [7], and graphs of bounded
maximum degree [2, 7]. In another variant, the goal is
to add a fixed number of edges such that the diameter
is minimized [31]. Adriaens and Gionis [1] generalize
this setting to adding up to δ edges per node, which
corresponds to adding a matching for δ = 1. Both vari-
ants have been shown to be NP-hard and algorithms
with logarithmic approximation ratios (in the number
of added edges) have been proposed in the respective
papers. This problem has also been considered from
the viewpoint of opinion polarization in social networks.
Here, the goal is to reduce polarization, i.e., the distance
between pairs of nodes located in different groups, by
adding a small number of edges to the graph [20, 24, 30].

Graph augmentation has also been studied in the
context of small-world networks. In this setting, the
main question is how many edges one needs to add to
a graph to minimize the average shortest path length.
Watts and Strogatz [48] proposed a first model where
the nodes are placed on a circle, and edges representing
“long-range” contacts are added randomly to each node.
Kleinberg [31] introduced a formal model where the
nodes are placed on a grid, and each node is allowed
to add one shortcut edge following the inverse power
distribution. Kleinberg showed that such a small-world
network has an average path length that is logarithmic
in the number of nodes. Meyerson and Tagiku [37]
introduce edge weights in their model and allow the
addition of a constant number of shortcut edges to the
graph. They show that this problem is NP-complete
and provide constant approximation algorithms for the
weighted and the unweighted cases. Since many of the
problem variants have been proven to be hard, different
heuristics for adding a small number of edges to a
network have been considered in the literature [21, 39,
40].

In this paper, we look at a demand-aware average
shortest path length as the quality measure of our gen-

erated network. Our motivation to study an augmenta-
tion variant with a matching comes from demand-aware
data center networks [26, 42]: emerging optical switch-
ing technologies make it possible to enhance a given
network with a demand-aware matching. This model
has been considered before also in the theoretical litera-
ture: Kulkarni et al. [34] consider a setting where pack-
ets need to be routed from sources to destinations via a
matching. The authors present a stable matching that
is updated over time in an online fashion. Hanauer et al.
[28] presents a dynamic setting in which a weighted k-
disjoint matching is recomputed dynamically based on
changing demand. Other algorithms aim at minimizing
the load or the congestion of routing in demand-aware
networks [10, 11].

Also, demand-aware network design has been con-
sidered in the literature, however, not with a single
matching. Avin et al. [4] propose designing demand-
aware networks from scratch by building a bounded de-
gree graph. They provide a lower bound on the average
path length based on the entropy of the demand ma-
trix, and present a constant approximation algorithm
for sparse demand graphs. Hanauer et al. [27] study al-
gorithms to find k disjoint heavy matchings in a graph.
They show that this problem is NP-hard, and propose
different approximation algorithms for the problem.

2 Model

Infrastructure graph. We are given a set of nodes
V = {v1, . . . , vn} that communicate over an underlying
infrastructure graph G, this graph corresponds to the
physical network. The infrastructure graph is assumed
to have a non-constant diameter and a large number of
nodes n, where n is even (so that there always exists a
perfect matching).
Demand matrix. The communication pattern is
described by an n × n demand matrix D. In this
matrix, Du,v indicates the probability with which a
node u communicates to a node v. Observe that the
demand matrix is normalized, i.e.,

∑
u,v∈V,u ̸=v Du,v =

1, and the demand from one node to itself is 0, i.e.,
Dv,v = 0 ∀v ∈ V . For simplicity, we assume that the
demand matrix is symmetric. Thus, the demand matrix
encodes an edge-weighted, simple, undirected graph
(zero-weight edges are omitted). We use distG(u, v)
to denote the distance (the length of a shortest path
between) u and v in G. Our objective is to minimize
the weighted average shortest path length ObjD(G) =∑

u,v∈V Du,v · distG(u, v) in G for the given demand
matrix D.
Optimization objective. Our goal is to add a
perfect matching M to the set of edges of G that
minimizes the weighted average shortest path length



in this augmented graph G + M . We consider the
case where the added matching edges behave the same
as the edges of the underlying graph, i.e., they are
indistinguishable from the edges of the infrastructure
graph in terms of their weight and length. We now
define Minimizing Weighted Average Shortest
Path Length via Matching Addition (MWASP)
as finding for a given graph G a matching M that
minimizes ObjD(G+M).

3 NP-Hardness

Before discussing the approximation algorithm in the
next section, we state that even restricted to very sim-
plistic underlying infrastructure graphs and sparse de-
mand matrices, the problem remains NP-hard. Thus,
there is (probably) no polynomial-time algorithm com-
puting optimal solutions for more interesting real-world
infrastructure graphs and demand matrices.

Theorem 3.1. MWASP is NP-hard, even if the under-
lying graph is a cycle and every row and column of D
has at most two non-zero elements.

Proof. We reduce from Vertex Cover, which remains
NP-hard on graphs of maximum degree three [19].
Given a graph G = (V,E) of maximum degree three
and an integer k, the question is whether there is
a vertex cover of size at most k, that is, whether
there is a vertex subset S ⊆ V , |S| ≤ k, such that
for each e ∈ E we have e ∩ S ̸= ∅? Considering
such a Vertex Cover instance (G, k), we build an
instance (G′ = (V ′, E′), D, b) of the decision version of
MWASP where G′ is a cycle and b is the cost bound,
that is, the question is if there is a matching M so
that ObjD(G′ +M) ≤ b?

To better distinguish the graphs G and G′ we use
the term vertices for G and nodes for G′. Throughout
our construction we want to enforce certain edges to
be in a solution; denote with q the number of these
edges. For each of these edges, we set the demand
in D to a high number β and set the cost bound b to
satisfy qβ < b < (q + 1)β. (For ease of presentation, we
do not normalize D. By dividing b and each entry in D
by the sum of entries inD we could normalizeD without
changing the problem). Thus, the budget constraint
enforces that the endpoints of each of the q edges need
to have a distance of one in the resulting graph.

Subsequently, we describe our gadgets, each of
which forms a path of nodes in G′. In the end, these
paths will be connected to form the ring G′. Refer
to Figure 1 for a sketch of the gadgets and their
interactions.
Vertex gadget. Consider a vertex v ∈ V incident to
between one and three edges (vertices of degree zero

Edge Gadget

Vertex Gadget Vertex Gadget

Chooser Gadget

Figure 1: A schematic picture of our construction.
The green and solid green edges incident to the vertex
gadgets and the black edges within the edge gadget are
forced to be in the matching. One vertex in the chooser
gadget has a demand to the middle diamond vertex
in the edge gadget in the bottom but cannot reach it
directly. The only two options, indicated by the dotted
edges: Connect a vertex in the chooser gadget to the
helper vertex hv (denoted by the squares) in one of the
two vertex gadgets that represent the endpoints of the
edge. In the example, the left option is chosen and the
path to the diamond vertex in the bottom goes via the
vertex gadget into the edge gadget. Note that the long
path between the left circle node eℓ and the diamond
node emid in the edge gadget prevents traversing the
edge gadget from one circle node (eℓ) to the other (er).

can be ignored). Add a path on deg(v) + 1 nodes to
G′. These deg(v) + 1 nodes are a helper node hv (first
position in the path) and vertex nodes v1, . . . , vdeg(v).
Each vertex node vi corresponds to one edge incident
to v.
Edge gadget. For each edge e ∈ E, add a path P e

on 4 ·α−1 nodes e1, . . . , e4α−1 to G′ (α will be specified
later). The unique middle node in this path is emid =
e2α and the nodes at distance exactly α from emid are
the edge nodes eℓ = eα and er = e3α (for left and
right). The remaining 4(α− 1) nodes are dummy nodes
whose purpose is to ensure the distances between emid

and eℓ, er. To ensure the matching cannot “disrupt” the
distances on the path, we set for each i ∈ [α − 1] the
demand of the pairs D(eα−i, eα+i) = D(e3α−i, e3α+i) =
β. Add a dummy node e0 at the beginning of the
path P e and set a demand D(emid, e0) = β. Let u, v
be the endpoints of e, that is, e = {u, v}. Add the
demand D(eℓ, vi) = D(er, uj) = β where vi, uj are the
vertex nodes corresponding to e. Here the mapping of eℓ

to vi and er to uj is arbitrarily chosen, but fixed.
Chooser gadget. Add m = |E| demand
nodes d1, . . . , dm, connected on a path. For an edge ei ∈
E the demand node di has a demand of 1 to emid

i , that is,



D(di, e
mid
i ) = 1. For all but k of these demand nodes we

force edges in the matching as follows. To this end, as-
sume without of generality that k and m have the same
parity (otherwise double G and k). Thus m− k is even.
For i ∈ [(m−k)/2] add the demand D(di, dm+1−i) = β.
The remaining k demand nodes are free to be connected
to the vertex nodes (the idea is that they select a vertex
cover).
Gap gadget. To ensure that different gadgets are far
apart on the ring, we add a gap paths. Each gap path
consists of 4β gap nodes g1, . . . , g4β . For each i ∈ [β]
the demands are D(g4i−3, g4i−1) = D(g4i−2, g4i) = β.
The overall construction. Put all vertex, edge
gadgets and the chooser gadget on the ring (in arbitrary
order), ensuring that between any two of these gadgets
a gap gadget is placed. Set all the demands that were
not mentioned to zero. Note that b < (q + 1)β and
all numbers are polynomially bounded in the input.
Correctness. We show that (G, k) is a yes-instance of
Vertex Cover if and only if (G′, D, b) is a yes-instance
of MWASP .

“⇒”: Let S ⊆ V be a vertex cover of size at most k
for G. Denote S = {s1, . . . , sk} ⊆ V . Then add to G′

the following matching M : For each pair {u, v} with
demand D(u, v) = β add {u, v} to M . Moreover, for
each vertex si ∈ S add the edge {d(m−k)/2+i, hsi}. We
claim that this matching incurs a cost of at most b. By
construction, each pair {u, v} with demand D(u, v) =
β has distance one in G′ ∪ M . Thus, these pairs
contribute qβ to the cost. The only other non-zero
demands are between the demand nodes and the middle
nodes in the edge gadgets. Consider demand node d
having demand one to emid. Since S is a vertex cover,
there is an s ∈ S with e∩ s ̸= ∅. Hence, the edge {d′, s}
is in M for some demand node d′. Moreover, M also
contains the edge {si, eℓ} or the edge {si, er} for some
i ∈ [3]. Thus, in G′ ∪ M there is the path P from d
to emid via d′, hs, s

i, and either er or eℓ. Every demand
node has a distance less than m to each other demand
node in G′. Moreover, er and eℓ have distance α to emid.
Hence, P has distance at most m+ α+ 3. This gives a
cost of at most m(m+ α+ 3) for the demands of value
one. Thus, the overall cost is at most b.

“⇐”: Let M be a matching added to G′ such that
the cost is at most b. We claim that in G there is a
vertex cover S ⊆ V , |S| ≤ k, formed by the vertices
whose helper nodes are matched to demand nodes in M ,
formally, S := {v ∈ V | {di, hv} ∈ M ∧ i ∈ [m]}.

Denote with M ′ the pairs {u, v} with de-
mand D(u, v) = β. Since b < (q + 1)β, it follows
that M ′ ⊆ M . The only nodes not matched in M ′ are k
demand nodes di, i ∈ {(m−k)/2+1, . . . ,m−(m−k)/2},
and all helper nodes. Thus, |S| ≤ k. It remains to show

that S is indeed a vertex cover.
The remaining budget for the demands between the

demand nodes and the middle nodes is m(α +m + 3).
Note that in G ∪ M ′ each middle node emid for the
edge e = {u, v} ∈ E has distance (α + 1) to the two
helper nodes hv and hu and distance more than 2α to
all other helper nodes and the demand nodes. Thus,
in G ∪ M the distance between any demand node and
any middle node is more than α. By the choice of α, we
have that (m+1)α > m(α+m+3). Thus, each demand
node d has a path of length strictly less than 2α to the
middle node emid with D(d, emid) = 1. Hence, for each
edge e = {u, v} ∈ E at least one of hv and hu needs
to be matched to a demand node. Thus, S is indeed a
vertex cover in G.

4 Approximation Algorithm

In this section, we discuss the main algorithm of this
paper, which provably retains a constant factor approx-
imation for a critical class of demand matrices. The
main idea behind our algorithm is to benefit from the
fact that shifting our view to design a higher degree net-
work first and then transferring that result into match-
ing opens up new possibilities.

We first define new terminologies that we need to
describe our approximation algorithm, then go over the
algorithm and at the end, we show the approximation
factor of our algorithm.

4.1 Preliminaries. We now go over terminologies
that we need in the design of our algorithm.
Demand graph. The demand graph is a weighted
graph. It is built by considering the demand matrix
as the adjacency matrix of the graph. However, if two
endpoints have already an edge in the infrastructure,
we do not consider an additional edge in the demand
graph.
Super-graph and super-node. The super-graph is
an undirected simple graph, consisting of super-nodes.
A super-node is a collection of nodes of an underlying
graph. We consider the case that each super-node
contains exactly α nodes of the infrastructure graph,
for a fixed 1 < α ≤ n. ∗

Similarly, we can define the demand graph for the
super-graph. We call that super-demand-graph.

4.2 Algorithm. Now we introduce our algorithm,
SpiderDAN†. We start by discussing how super-nodes are

∗We point out that the fixed super-node size gives us the

bounds that we are looking for, but acknowledge that one can
consider a variable with different super-node sizes.

†Similar to how a spider creates its web from a combination

of threads (matchings). DAN refers to Demand-Aware Network.
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Figure 2: Steps of SpiderDAN considering a graph with 14 nodes (Figure 2a), and super-nodes of size α = 3.
We first run a depth-first search (DFS) from the node in the upper-right, shown in blue (Figure 2b). We then
do a pre-order traversal of the tree from one of the deepest leaves, collecting nodes in groups of 3(Figure 2c, we
consider the last group to have size only 2). Figure 2d shows a DAN is built on top of the super-graph, and lastly
in Figure 2e we show how this DAN can be transformed back into matchings.

formed, and then discuss how a demand-aware network
(DAN) can be built on top of it. We conclude by
discussing how the DAN on the super-graph can be
transformed into matchings.
Super-node creation. From our infrastructure graph
G (that can be any connected graph, an example in
Figure 2a) we create a super-graph S in two steps:

1. Our algorithm first creates a spanning tree on the
infrastructure graph (e.g. by running a Depth First
Search) from a node of G (Figure 2b).

2. To form each super-node, we take the deepest node,
and we consider the subtree of its grand-parent at
distance α. Then we select and delete α arbitrary
deepest nodes from this subtree one by one, and
add them to the super-node and then remove them
from the sub-tree. We repeat this procedure until
we group all nodes into super-nodes (Figure 2c).

Let us assume the output of the above steps as the
node mapping fS . For the super-graph S the node
set is S(V ) = fS(V (G)) and the edge set E(S) =
{{fS(u), fS(v)} | fS(u) ̸= fS(v), {u, v} ∈ E(G)}. For
simplicity, in the rest of this section we assume n to
be divisible by α (later on, we will discuss how we
overcome this assumption in practice, as our super-node
creation algorithm can run without this assumption).
The entries of the demand DS for a, b ∈ V (S) are

DS(a, b) =
∑

u,v∈V
fS(u)=a,fS(v)=b

Du,v

DAN on super-graph. After creating the super-
graph, we use the construction of Avin et al. [4] to
build a demand-aware network (DAN) on top of the
super-nodes. We consider a degree at most 12 ·∆avg on
top of the super-graph, where ∆avg denotes the average
degree of the super-demand-graph, that is the number
of non-zeros per row/column in the matrix.

Matching assignment inside a super-node. We
now transform the edges of the DAN on top of super-
nodes into a matching on the original graph. Thus, for
each super-node v we can map each incident edge to a
different node in f−1

S (v) and obtain a matching in G.
See a visualization in Figure 2e. In this transformation,
we try to not add an edge that already exists in the
infrastructure graph.

4.3 Analysis. In this section, we prove that
SpiderDAN on very sparse demands and constant de-
gree infrastructure graphs computes a constant factor
approximation, and discuss its running time at the end.
For analytical purposes, we restrict ourselves to demand
graphs with an average degree of at most 1/12 (we dis-
cuss how this assumption can be improved later). Note
that the constructed DAN has a maximum degree of
12∆avg ≤ 12, by assumption.‡

Lemma 4.1. (⋆) Any two nodes within a super-node
have a distance of at most 2α in the infrastructure
graph.

Approximation ratio. To compute the approxima-
tion ratio of SpiderDAN, we first require a few relations
between adding a matching to a graph and demand-
aware networks for the super-graph.

Lemma 4.2 establishes a lower bound on the match-
ing cost using demand aware networks for the demand
DS .

Lemma 4.2. (⋆) Given a graph G with demand D,
and a super-graph S with corresponding demand DS

obtained by merging α nodes into super-nodes as defined
by the node mapping fS. For any matching M on
V (G), there exists a demand-aware network HS for DS

with maximum degree at most α(1 + ∆(G)) such that
ObjD(G+M) ≥ ObjDS

(HS).

‡The proofs of statements marked by ⋆ are deferred to an
appendix.



Given a demand-aware network for the super-graph
with maximum degree at most α, then a matching on
the infrastructure graph can be found with cost only a
constant higher than that of the demand-aware network.

Lemma 4.3. Given a graph G and demand D, and a
super-graph S with corresponding demand DS obtained
by merging α nodes into super-nodes as defined by the
node mapping fS. For any demand-aware network HS

with maximum degree at most α there exists a matching
M on V (G) such that ObjD(G+M) ≤ 7α ·ObjDS

(HS).

Proof. We construct a matchingM in the following way:
initially M = U = ∅. For each edge {a, b} ∈ E(HS) pick
any u ∈ f−1

S (a) and v ∈ f−1
S (b) with u, v /∈ U , further

add {u, v} to M , and add u, v to U . Since ∆(HS) ≤ α
and |f−1

S (c)| = α for all c ∈ V (HS), this algorithm will
always find a matching M with |M | = |E(HS)|.

Now consider any u, v ∈ V and let PS = a0, . . . , aℓ
be a shortest path between fS(u) and fS(v) in HS .
For each edge {ai, ai+1} of the path PS we have a
corresponding matching edge {vis, vi+1

t } in M . W.l.o.g.
assume fS(v

i
s) = ai and fS(v

i+1
t ) = ai+1. We denote

by x − y a shortest path between x and y in G. We
can find a walk from u to v of the following form:
P = u− v0s , v

1
t − v1s , v

2
t , . . . , v

ℓ−1
s , vℓt − v. The “−” parts

of P are paths along edges of the infrastructure graph,
between two nodes that are merged into the same super-
node, which means these parts have length at most 2α.
The “,” parts of P are always edges from M . This
means P has length at most (ℓ+ 1)(2α) + ℓ. This is at
most 2α for ℓ = 0 and at most 5αℓ for ℓ ≥ 1.

Let H = G+M . From the above, it follows that

ObjD(H) =
∑

u,v∈V

distH(u, v)Du,v ≤

∑
u,v∈V

(2α+ 5α distHS
(fS(u), fS(v)))Du,v

= 2α+ 5αObjDS
(HS) ≤ 7αObjDS

(HS)

Where the last inequality holds, because Obj∗(∗) ≥ 1
for any demand and any graph.

An important property of demand-aware networks
is that their cost can be lower bounded by a metric
related to the demand matrix, namely conditional en-
tropy, with a logarithmic factor in the maximum degree.

Lemma 4.4. (DAN lowerbound [4]) For any
demand D and any demand-aware network G
with maximum degree at most ∆ it holds that
fCE(D)/ log2 (∆ + 1) − 1 ≤ ObjD(G), where fCE(D)
is the conditional entropy of the demand matrix,
that is fCE(D) =

∑
v∈V dv ·

∑
u∈V log2

dv

Du,v
with

dv =
∑

u∈V Du,v.

We are now ready to prove the main statement of
this section.

Theorem 4.1. Given a graph G with a demand graph
D of average degree at most 1

α , then for α = 12 the
SpiderDAN computes a matching M for which

ObjD(G+M) ≤ c · min
matching M ′

on V (G)

ObjD(G+M ′)

for some non-negative constant c that depends only on
α and ∆(G).

Proof. Let S be the super-graph constructed from G
and fS the corresponding node to super-node mapping.
The super-demand DS has an average degree at most 1.

Given DS as input, the algorithm by Avin et al. [4]
computes a demand-aware network HS with maximum
degree at most 12, whose expected path length under
DS is optimal up to a constant factor. More specifically,
ObjDS

(HS) + 1 ≤ c1 · fCE(DS), for some non-negative
constant c1 that depends only on α. Furthermore, one
can see that ObjDS

(HS) ≤ 2 · c1 · fCE(DS), because
Obj∗(∗) ≥ 1 for any demand and any graph. This in
combination with Lemma 4.4 means it is a constant
factor approximation for an α-degree demand-aware
network for DS .

Using Lemma 4.3 on HS we obtain a matching M
over V (G) such that ObjD(G+M) ≤ 7α ·ObjDS

(HS) ≤
14 · αc1 · fCE(DS). From the well-known decomposition
(or grouping) property of entropy [4, 9], which intu-
itively means that merging two probability values into
one by adding them, does not increase entropy, it fol-
lows that fCE(DS)) ≤ fCE(D) and consequently we have
ObjD(G+M) ≤ 14 · αc1 · fCE(D).

From Lemma 4.4 and Lemma 4.2 we know that the
cost of an optimal matchingMopt is bounded from below
by fCE(D)/ log2 (α(1 + ∆(G)) + 1)− 1. By rearranging
terms and setting c2 = 1/ log2 (α(1 + ∆(G)) + 1) we
obtain c2 · fCE(D) ≤ ObjD(G+Mopt) + 1. Using again
that Obj∗(∗) ≥ 1 for any demand and any graph, we
obtain ObjD(G + Mopt) ≥ 1

2c2 fCE(D)), which proves
that the matching M computed by SpiderDAN is a
constant factor approximation (with factor c = 28 · α ·
c1/c2).

We remark that Theorem 4.1 would be able to
achieve α = 5 if we replace the algorithm from Avin
et al. [4] by the recent algorithm from Figiel et al. [17];
the proof is analogous. However, we point out that
the result of this recent paper is not needed to ensure
constant approximation of our algorithm.
Running time. The running time of our algorithm is
O(n2 · log n). Grouping nodes into super-nodes using
a depth-first search algorithm depends on the number



of edges of the infrastructure graph which is at most
O(n2).

Demand-graph requires a running time of O(n2), as
it requires going over the whole demand matrix. Then,
running the DAN algorithm [4] has a running time
of O(n2 · log n). Turning edges of DAN to matchings
also takes O(n), as turning α edges of a super node to
matchings takes a constant time. Hence, in total, the
running time of the algorithm is O(n2 · log n)§.

5 Heuristics

We will experimentally compare SpiderDAN against sev-
eral natural heuristics that we discuss below. Note that
most of these heuristics do not provide any theoretical
guarantees on the solution quality.
Greedy. This algorithm matches pairs of nodes one by
one. A pair of nodes is valid if it does not increase
the degree of nodes to higher than 1. The Greedy

algorithm starts by sorting all pairs of nodes based
on their demand in descending order. Starting with
the edge of highest demand, it considers the next valid
edge in the sorted list as the next matching edge. The
running time of this algorithm is O(n2 · log n), which
comes from the sorting of the list. Among all heuristics,
this is the easiest algorithm to implement, given that it
does not rely on other algorithms.
Matching on demand. This heuristic builds on top
of the well-known maximum weighted matching [18, 33].
The Matching on demands algorithm uses the demand
graph that we introduced before, in which each edge is
weighted by its demand, except the infrastructure edges.
The algorithm then considers the maximum matching
on the demand graph as its output. The running time
of this algorithm is O(n3), given the currently best
maximum weighted matching algorithm [13].
SuperChord. Based on the idea of creating super-
graphs, we aim to benefit from the well-known
Chord [46] protocol. To this end, we create a super-

graph by combining x = W (n·ln 2)
ln 2 consecutive nodes,

where W represents Lambert W function, and lg the
natural logarithm function¶. We then build the Chord
on the n

x super-nodes of the super-graph. The result-

ing graph has degree log(nx ). We set x = W (n·ln 2)
ln 2 as it

ensures x = log(nx ). This allows us to view the log(nx )
outgoing edges of a super-node as matching edges ini-
tiated from the nodes within the super-node. Observe

§The running time of the algorithm can be improved to
O(n · logn), if the sparsity of demand matrix is known beforehand
and the demand matrix is given in a sparse representation.

¶If the number of super-nodes is not a power of two, we
consider the super-graph with closest and smaller power of two as
the number of super-nodes.

that the super-graph can be created in linear time in n,
and adding x edges on each of n

x super-nodes only takes
O(n) time. Thus, with a running time of Θ(n), the
algorithm is relatively fast‖. We note that the Chord
algorithm ensures a log n diameter (considering degree
log n) [46]. As the size of super-nodes is O(log n), we
can ensure that any two nodes can reach each other via
a shortest path of length O(log n), which in turn implies
that SuperChord is an O(log n) approximation.

6 Experimental Evaluation

In this section, we evaluate the weighted average short-
est path length and the running time of our approxima-
tion algorithm, the heuristics.

Q1. How fast are our algorithms in practice?

Q2. How do our algorithms perform on real-world de-
mands?

Q3. Under which demand parameters do our algorithms
perform better?

Q4. What is the effect of the underlying infrastructure
graph on the performance of algorithms?

We believe answering the above questions would help
developers in selecting the right algorithm for their use
cases.

6.1 Demand matrices. To evaluate our results, we
consider both real-world instances and synthetically
generated ones. By doing so, we first show the benefits
of each algorithm in the wild, and then suggest the best
algorithmic choices for possible use cases in the future.
Zipf distribution demand. The Zipf distribution [6]
has shown to be an effective estimator for traffic fre-
quency distribution in data center networks [3, 49]. The
Zipf distribution depends on a parameter ζ > 0, which
indicates the skewness of the distribution. With lower
values of ζ, the distribution is more skewed. We use
a range ζ ∈ [2, 10] for Zipf values in our evaluations.
Concretely, for given ζ and n elements, the probabil-
ity mass function for an x ∈ [1, n] is determined by

f(x) =
(
xζ ·

(∑n
i=1

1
iζ

))−1
. When running our experi-

ments for various values of ζ, we normalize the sum to
ensure the total demand remains the same.
Sparse demand. In order to test our algorithms on
an even wider range of possibilities, we generate random
demand matrices with controlled sparsity. For a sparsity
parameter γ, we ensure that each cell of a matrix has
high demand (determined by the user, we considered

‖We remark that computing the cost of this algorithm depends
on the size of demand graph.



100) with probability 1 − γ. We consider the range
γ ∈ [0.1, 0.9] for sparsity values.
Real-world demands. Our code has been tested
on a range of real-world data center traces [3] that
has been the base of comparison for many previous
works [5, 27, 41]. In particular, we focused on the
Meta (formerly known as Facebook) dataset [43]. This
dataset contains communication between racks and
servers within three data center clusters (Database,
Web Services, and Hadoop, sorted by their number of
nodes) which we call A to C respectively. We focus
on the communications between racks. We summarize
each dataset into a list, in which the frequency of
communication between each rack pair is listed.

Furthermore, we consider a set of 66 instances from
SuiteSparse matrix collection (formerly known as the
University of Florida Sparse Matrix Collection) [12],
covering various applications. We have chosen symmet-
ric matrices with up to 10, 000 rows, that also have pos-
itive values.

6.2 Infrastructure graphs. In our evaluations, we
have used symmetric infrastructure graphs. We believe
that the following infrastructure graphs can give us the
insight that we need to incorporate our algorithms in
real-world applications.
Ring. A ring is the simplest symmetric infrastructure
that ensures the connectivity of the graph. Hence, this
structure echoes the effect of the added matching the
most. The ring graph has been a backbone of fundamen-
tal advancements in the design of reconfigurable net-
works [38, 46]. We believe the ring is a good candidate
to be the default infrastructure to run our experiments
on: it has a high diameter, symmetric, and simple con-
nected graph, and hence can show the effect of various
algorithms in cost reduction more clearly. We mention
explicitly when using other infrastructure graphs in our
experiments.
2D and 3D Torus. A torus is a natural extension of a
ring, which ensures more connectivity in the infrastruc-
ture graph. A torus is a grid that preserves symmetry
by connecting border nodes to each other. The grid-like
structures have been the basis of previous studies on the
effect of adding a matching, for example when discussing
Kleinberg’s model for small world networks [14, 32]. In
our evaluations, we considered both 2D torus structures
(where each node has 4 neighbors) and 3D torus struc-
tures (where each node has 8 neighboring nodes).

6.3 Results. Our code is written in python 3.10,
benefiting from networkx [25] and gurobipy [23] li-
braries. Our visualizations use Matplotlib [29]. The
code was executed on a machine with Intel® Xeon®
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Figure 3: The running time of all of our algorithms is
displayed. The number of vertices are powers of two
(up to 4096 vertices). We have considered randomly
generated demand matrices with sparsity value 0.9. We
capped off the running times at 10 seconds, and showed
it in log-log format for better visibility.

CPU E5-1620 CPU with a clock frequency of 3.60GHz,
and 64GB RAM.

We now focus on answering questions proposed at
the beginning of the section, showing how our algo-
rithms behave given the above-mentioned demand ma-
trices and infrastructure graphs. Before that, we want
to point out that we also tested an MIP-formulation (de-
tailed in Appendix B) solved with Gurobi optimizer [23].
We do not include it in our plots as it hit our time
limit of 1 hour per instance already on instances with
≈ 20 vertices. Notably, even the LP-relaxation could
not solve the instances with ≈ 200 vertices within the
time limit.∗∗

In the SpiderDAN, when we transform edges of the
super-graph to matching, i.e., picking nodes inside cor-
responding super-nodes to connect to each other, we se-
lect the pair of nodes that have highest demand between
them. Furthermore, we noticed in our experiments that
for algorithms that use super nodes, sometimes these
supernodes do not cover all nodes in the infrastructure
graph (i.e., the size of the infrastructure graph is not
divisible by the size of a supernode). In such a case, we
run Matching on demand on those remaining nodes to
complete the matching.
A1. Running time of algorithms. All our pro-
vided algorithms except Matching on demands are suf-
ficiently fast on the graph sizes that we expect in prac-
tice (with up to a couple of thousands of nodes) with

∗∗We tried the LP-relaxation for lower bounds. However, we
do not discuss these bounds as we only can solve a few smaller

instances with the LP and the LP-bound was on average a factor
of ≈ 2 away from the MIP-solution (when we have both).
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Figure 4: Left: the results on the three datasets from Facebook. Right: Results for 66 instances from SuiteSparse
matrix collection. The instances are sorted by the quality of SpiderDAN.

running times measured in seconds, see Figure 3 for a
plot. There are, however, notable differences between
the algorithms. SuperChord is by far the fastest al-
gorithm as it essentially ignores the demands (which
can be O(n2) many). Next are Greedy and SpiderDAN

that show very similar running times. Matching on

demands is clearly the slowest algorithm with the com-
putation of a maximum weight perfect matching being
the overall most costly operation.
A2. Results on real-world data sets. Here we focus
on the Facebook and SparseSuite datasets. As shown
in Figure 4a, the results are mixed on the Facebook
dataset. Matching on demands and Greedy perform
very similar. SpiderDAN performs very well on clusters
A and C, but is a bit worse on cluster B. Previous
work [43] has shown that cluster B has a higher average
demand degree, which is the reason behind the slightly
higher cost across different algorithms. Moreover, it
aligns with our theoretical findings (see Theorem 4.1),
that SpiderDAN performs better on low average demand
degree.

Given that SuperChord performs poorly on clusters
B and C, we suspect the demands to be very skewed in
these instances. In contrast, SuperChord gives the best
results on cluster A.

As shown in Figure 4b, on sparse instances, our
algorithms (except the demand-agnostic SuperChord)
perform more or less the same, but in most of instances
where there is a noticeable difference, SpiderDAN seems
to perform better.
A3. Effect of demand parameters. Here, we discuss
the effects of the parameters of three synthetic demands,
namely the sparsity value (γ), and the zeta value of the
Zipf distribution (ζ). We go through the details of the
results for each parameter.

• Sparsity of the random distribution. As
expected, with more sparse demand our algorithms
provide solutions of lower cost, see Figure 5a. A
sparser demand can cause a higher fraction of the
demand being directly covered by the edges in
the matching, that is, the demand pairs will have
a distance of one, and hence a lower cost. On
the other hand, the demand-agnostic SuperChord

performs very well when faced with less sparse
demand, especially in this case when the non-zero
demands are equal. The random demands are quite
uniform, which benefits SuperChord.

• Zeta of the Zipf distribution. Similar to be-
fore, based on our results shown in Figure 5b, we
can see that as the zeta of Zipf distribution grows,
i.e. data becomes more uniform, the algorithms
perform better. However, in contrast to the previ-
ous case, here, the values of non-zero demands can
be different, therefore SuperChord does not have
the edge that it had beforehand, and SpiderDAN

performs better than it and other algorithms.

A4. Effect of infrastructure graphs. Given the
selected set of infrastructures, we can observe how
an increase in the average degree of infrastructure
graphs affects the cost of our algorithms. In particular,
we believe our algorithms echo the inherent improved
average distances in the infrastructure, as we saw a
rapid improvement going from a ring (essentially a 1D
torus) to a 2D torus. However, the improvement is much
less when going from 2D to 3D torus, as can be seen in
Figure 5c. Moreover, it can be seen that the ranking of
the algorithms by solution quality stays the same for 1D,
2D, and 3D torus. Hence, only considering the ring in
our other experiments highlights the differences between
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Figure 5: Effect of various parameters on the approximation ratio of algorithms (the cost of the respective
algorithm divided by the cost of ring). Figure 5c considers on 4096 node (as it is even and a power of six, so we
can have both 2D and 3D Torus with this size), and we used sparse instances with γ = 0.9. The two other figures
are based on 4096 and 1024 nodes, due to the time limit that we set for each instance.

the algorithms.

6.4 Summary & Outlook We first start by recap-
ping the answers to the proposed questions:

A1. With SuperChord being the by far fastest algo-
rithm, SpiderDAN and Greedy are on shared sec-
ond place and are still fast enough on the large
real-world instances.

A2. Our results indicate that our algorithms using
super-graphs, in particular SpiderDAN, can be a
good option to reduce the cost in real-world in-
stances, in conjunction with other greedy algo-
rithms.

A3. We observed that our algorithms can exploit the
underlying demand structure, to provide close to
optimal outcomes. In particular, part of our algo-
rithms show promising results with high sparsity
and high zeta values.

A4. We observed that our algorithm can utilize the
underlying infrastructure graph to enhance their
outcome, echoing the reduction in the average
distance of the infrastructure graphs.

In summary, we can recommend SuperChord for uni-
form demands: it provides the best and fastest solutions
in this case. However, for skewed demands especially
in real-world datasets, the heuristic can perform quite
poorly.

For each heuristic there is a real-world dataset
where SpiderDAN provides solutions of better quality
than the heuristic. Overall SpiderDAN provides com-
parable results to the heuristics; there is no instance

where it is outperformed significantly. Given that it
comes with some guarantees on the solution quality, we
recommend it when solving real-world instances.

7 Conclusion

In this paper, we tackled the problem of minimizing
the demand-aware average shortest path, via matching
addition. Our goal is to augment the given physical
network based on communication frequencies. We pro-
vided insights into its computational complexity and
exact and efficient algorithms. We started exploring
the computational complexity ofMWASP , showing NP-
hardness even in restricted cases and providing the
constant-factor approximation algorithm SpiderDAN for
highly skewed sparse demand matrices. To argue about
general demand matrices we performed an extensive em-
pirical evaluation. We thereby compared the SpiderDAN
algorithm together with various heuristics to the exact
solution (provided by a mixed integer program) on a
series of real-world and synthetic datasets.

Our paper opens interesting directions for future
work. Observe that our SpiderDAN is designed for low
average degrees in the demand graph. The lower bound,
on the other hand, is based on conditional entropy and
is constant for low-entropy demand matrices. An open
question is whether it is possible to find a constant ap-
proximation for certain low entropy demand matrices
that are not covered by our method. One particularly
engaging example is the ring demand graph where the
infrastructure graph is a different ring. As a contribu-
tion to the research community, and to ensure repro-
ducibility, we open-source our code and experimental
artifacts at the following URL:
https://github.com/inet-tub/SuperDAN

https://github.com/inet-tub/SuperDAN
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A Omitted Proofs

In this section, we overview the proofs omitted in the
main body of the paper.

A.1 Proof of lemma 4.1

Proof. We prove by induction on the number of super-
nodes created in the super-node creation algorithm.
We prove a stronger statement than above: we prove
that our algorithm additionally keeps the tree connected
after removing already picked nodes.

When we have zero super-nodes, and we consider
the deepest node in DFS, and all the nodes in the sub-
tree of its grand-parent of distance α. We know that we
can go from any of the nodes in the subtree to any other
node by traversing at most 2 ·α edges (by simply going
to the grand-parent from the source node and then to
the destination node). Furthermore, we have at least
α nodes in this subtree. Hence, a super-node can be
created in this sub-tree, and the distance between any
two nodes is at most 2 · α. Furthermore, by iteratively
grouping the leaves into the super-node, we can ensure
that the tree remains connected.

Now let us assume that we have selected k super-
nodes, and consider nodes that are being selected in
the super-node k + 1. Given that after k super-node
creation the tree remains connected, we can simply use
similar arguments to the zero case, to show that the
distance between nodes in the selected super-node is at
most 2 ·α and the tree remains connected after grouping
nodes into k + 1 super-node.

A.2 Proof of lemma 4.2

Proof. Given H = G+M let HS be the graph obtained
by merging nodes ofH into super-nodes in the same way
that S was obtained from G using the node mapping
fS . The graph HS has maximum degree at most
α(1 + ∆(G)).

Consider any u, v ∈ V (G) with u ̸= v and let
P = v0, . . . , vℓ be a shortest path between u and v in
H, where v0 = u, vℓ = v. Let PS = fS(v0), . . . , fS(vℓ),
which is a walk in HS . Therefore distH(u, v) ≥
distHS

(fS(u), fS(v)). We now have that

ObjD(H) =
∑

u,v∈V

distH(u, v) ·Du,v ≤

∑
u,v∈V

distHS
(fS(u), fS(v)) ·Du,v = ObjDS

(HS)

Table 1: A summary of variables used in the MIP.

Input variables Description

Du,v Demand between nodes u and v.

degu Degree of node u.

MIP variables Description

au,v Indicating whether the edge (u, v) is
added to the matching or not

dist(u, v) Distance between nodes u and v.

yu,v
w Binary variable indicating if shortest

path between u and v goes through w
or not.

Algorithm 1 Mixed Integer Program to Compute
Optimal Solution

1: Minimize
∑

u,v∈V dist(u, v) ·Du,v

2: distu,v = 1 ∀(u, v) ∈ E
3: for u, v ∈ V & u ̸= v & (u, v) /∈ E do
4: yu,vw ∈ {0, 1}
5: au,v ∈ {0, 1}
6: au,v = av,u
7: dist(u, v) ≥ 1
8: dist(u, v) ≤ au,v + (1− au,v) ·M
9: dist(u, v) ≤ dist(u,w) + dist(w, v) ∀w ∈ V

10: dist(u, v) ≥ dist(u,w) + dist(w, v) + (yu,vw − 1) ·
M ∀w ∈ V

11:
∑

w∈V \{u,v} y
u,v
w + au,v = 1

12: for u ∈ V do
13:

∑
∀v∈V & v ̸=u∈V & (u,v)/∈E au,v = 1

14: disu,u = 0

B Mixed Integer Program

In this section, we detail our Mixed Integer Program
(MIP), Program 1, as an exact solution to the problem.
A summary of variables used in our MIP is in Table 1.

Our goal for this MIP is to minimize distance times
the demand for each pair of nodes (Line 1). In doing
so, we respect the edges of the infrastructure graph by
setting the distance between their two endpoints equal
to one (Line 2) and the distance of a node to itself is zero
(Line 14). Our MIP uses a symmetric binary variable
au,v to decide whether it wants to add a matching edge
between nodes u and v. It therefore goes over all pairs
of nodes u ̸= v that do not already have an edge in the
infrastructure graph in Line 3.

In order to have a matching, each node should have
one active edge (Line 13). Lines 7 and 8 ensure that an
active edge has a distance of one. We then force shortest
path distances between all other nodes in Lines 9 to 11.
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