SeedTree: A Dynamically Optimal
And Local Self-Adjusting Tree

Arash Pourdamghani
Joint work with Chen Avin, Robert Sama, Stefan Schmid

Dutch Optimization Seminar
29 June 2023

SeedTree at a glanc®

1) Why? 2) What? 3) How?

1) Why?

Servers and VMs

Online Request Sequence

| want to
communicate
with VM 6 now.

VM 1 please!

Online Request Sequence

| want to
communicate
with VM 6 now.

VM 1 please!

Do we have any structure in the demand?

Structure in The Demand

Spatial Structure

bursty uniform

pF

DB

CNS .ML
Web

Multi . Had

Grid

@ NN

bursty & skewed

skewed

Temporal Structure

On the Complexity of Traffic Traces and Implications

Avin et al., ACM SIGMETRICS 2020

Facebook
Web

Machine
Learning

Facebook
Hadoop

HPC
MultiGrid

Neural
Networks

https://schmiste.github.io/sigmetrics20complexity.pdf

Structure in The Demand

Can we design a self-adjusting network that utilizes demand?

bursty uniform
o pF Facebook
s Web
= CNS ML
=+ .
O DB Machine
: a
- Learning
)
2 Web Facebook
) Hadoop
"‘; Multi . Had
Q Grid
0 HPC
MultiGrid
@ NN
bursty & skewed
skewed . Neural
Networks

Temporal Structure

On the Complexity of Traffic Traces and Implications 9
Avin et al., ACM SIGMETRICS 2020

https://schmiste.github.io/sigmetrics20complexity.pdf

Structure in The Demand

Can we design a self-adjusting network that utilizes demand?

Let us start by a dynamically optimal self-adjusting tree!

bursty uniform

o pF Facebook

i Web

= CNS ML

=+ .

(%) DB Machine

E Learning

)

2 Web Facebook

1) Hadoop

-Ia Mult Q Had

Q Grid

" HPC
MultiGrid

@ NN
bursty & skewed
skewed . Neural
Networks
Temporal Structure
On the Complexity of Traffic Traces and Implications 10

Avin et al., ACM SIGMETRICS 2020

https://schmiste.github.io/sigmetrics20complexity.pdf

2) What?

| want to
communicate
with VM 6 now.

Requests From A Single Source

12

Network
destination

127.0.0.0

192.168.0.0

255.255.
192.168.0.100 e 127.00.1 127.0.0.1 10

Using Local Routing (i.e., Without A Routing Table)!

13

Considering A Binary Tree Structure on Servers

14

| want to
communicate
with VM 6 now.

Allowing ltem Movements on Edges

15

| do not have
capacity!

Allowing ltem Movements on Edges

16

| do not have
capacity!

Allowing ltem Movements on Edges

17

Allowing ltem Movements on Edges

18

An Abstraction

—~

19

Formal Question
Servers with
a constant

J leen: capacity ¢

» A set of servers connected as a binary tree
» Each server with a constant capacity c 0

Tree

20

Formal Question
Servers with
a constant

a Given: capacity ¢

» A set of servers connected as a binary tree
» Each server with a constant capacity c O
> A set of items \
> Revealed over time (o0 = g4, 0y, ..

)

Items Tree

21

Formal Question
Servers with
a constant

0 Given: . capacity ¢
> A set of servers connected as a binary tree
» Each server with a constant capacity c 0
> A set of items
> Revealed over time (o = g4, 0y, ...)
- 0]
» Only local routing based on IDs .

O
Routing

based on IDs

Items Tree

22

Formal Question
Servers with
a constant

0 Given: capacity ¢
> A set of servers connected as a binary tree
» Each server with a constant capacity c Q
> A set of items \
> Revealed over time (o = 0y, 09, ...) ‘

» Only local routing based on IDs

0
Routing
N

m based on IDs
00 11

Items Tree

23

Formal Question
Servers with
a constant

0 Given: . capacity ¢
> A set of servers connected as a binary tree
» Each server with a constant capacity c 0
> A set of items
> Revealed over time (o = g4, 0y, ...)
- 0]
» Only local routing based on IDs .

Routing
based on IDs

1

0]
9
00

Items Tree

24

2 Actions (for a prefilled tree®):

Formal Question

25

2 Actions (for a prefilled tree®):
» Access an element (depth)

Formal Question

000 Vb

26

Formal Question

2 Actions (for a prefilled tree®):
» Access an element (depth)

» Reconfigure the tree (moving item over an edge)

27

Formal Question

2 Actions (for a prefilled tree®):
» Access an element (depth)

» Reconfigure the tree (moving item over an edge)

2 Obijective
> Minimize the total cost
> Total: access + reconfiguration

28

2 Actions (for a prefilled tree®):
» Access an element (depth)

Formal Question

» Reconfigure the tree (moving item over an edge)

2 Obijective
> Minimize the total cost

» Total: access + reconfiguration

a Dynamically optimal
> l.e., constant competitive
» CoStyrq < a- Costopr

29

Previous work

Data structure Dynamlcally Optimal | Local Routmg'-’

SeedTree [Pouradmghani et al., INFOCOM’23] Item Movement

000

Moving
Items 30

Previous work

Data structure
SeedTree [Pouradmghani et al., INFOCOM’23]
Splay Tree [Sleator & Tarjan J. ACM’85]

Tango Tree [Demaine et al. FOCS’04, J. Comput07]
MultiSplay [Wamg et al. SODA’06]

000

Rotation

Dynamlcally Optimal | Local Routmg'-’

Item Movement

Rotation
Rotation X
Rotation

31

Previous work

SeedTree [Pouradmghani et al., INFOCOM’23]
Splay Tree [Sleator & Tarjan J. ACM’85]
Tango Tree [Demaine et al. FOCS’04, J. Comput07]
MultiSplay [Wamg et al. SODA’06]
Adaptive Huffman [Vitter J.ACM’87, FGK J.ACM’85]

Rotation

Item Movement

Rotation
Rotation X
Rotation
Subtree Swap X

-

Subtree
Swap

lly Optimal | Local Routing?

32

Previous work

Data structure Dynamlcally Optimal | Local Routmg'-’

SeedTree [Pouradmghani et al., INFOCOM’23] Item Movement
Splay Tree [Sleator & Tarjan J. ACM’85] Rotation
Tango Tree [Demaine et al. FOCS’04, J. Comput07] Rotation X
MultiSplay [Wamg et al. SODA’06] Rotation
Adaptive Huffman [Vitter J.ACM’87, FGK J.ACM’85] Subtree Swap X
Push-down-Tree [Avin et al. LATIN’20, TON’22] Item Swap X

Subtree

Item Swap

ltems Rotation Swap .

3) How?

(1) Uniformly
random hash
of items

Items

Tools & Techniques

Tree

35

Tools & Techniques

(2) Fractional

(1) Uniformly
random hash
of items

f occupancy
‘ per level
0]
d ®) N (

Items Tree

36

Self-adjustments Algorithm : Access

37

Self-adjustments Algorithm : Access

38

Self-adjustments Algorithm : Access

39

Self-adjustments Algorithm : Pull-up

40

Self-adjustments Algorithm: Pull-up

41

Self-adjustments Algorithm: Pull-up

42

Self-adjustments Algorithm: Push-down

43

Self-adjustments Algorithm: Push-down

1

o] ()
&
00

44

Self-adjustments Algorithm: Push-down

o] 4 &
000

&
00

45

Self-adjustments Algorithm: Push-down

L
&
00

1

111

()
11 |

46

Self-adjustments Algorithm: Push-down

4@‘- ;
(0]0]0)

47

Self-adjustments Algorithm: Push-down

I
b
=

()
11 |

48

Self-adjustments Algorithm: Push-down

49

Self-adjustments Algorithm: Push-down

50

SeedTree Analysis

51

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.

52

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

53

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:

Reconfiguration cost of SeedTree < 2 - ([-

+ 1) -Access cost of SeedTree.

1-fl 7 o

Proof sketch:

» 1 for pull-up

» Fractional occupancy ensures success

after [Tlf] tries, in expectation

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.

> Most Recently Used (MRU) Tree:

More recently accessed items = Lower level in the tree

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.

Proof sketch:
» Recent ones go to the root
» Probability of going a level down decreases

exponentially per level

56

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.
Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.

Q Property 3:
Access cost in MRU Tree < (1 + e) -Access cost of OPT.

SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.
Q Property 3:
Access cost in MRU Tree < (1 + e) -Access cost of OPT.

Proof sketch:
» Potential function analysis based on inversions

> Inversion: item with lower level but accessed earlier

010 001

N\ J

Their last accesses. OPT's tree

58

Access Cost

120

100

801

601

40

20+

Performance

SeedTree
Oblivious Algorithm
Static Algorithm

0

015 03 045 0.6
Temporal locality

0.75

0.9

Normalized

o
~
Ul

Cluster A Cluster B Cluster C
4 6 8 10 12 14 16
Capacity

github.com/inet-tub/SeedTree

https://github.com/inet-tub/SeedTree

Conclusion

0 Designing a constant competitive algorithm, utilizing randomization in each step.
2 Introducing the notion of capacity and item movement for self-adjusting trees.

2 Showing significant improvements in the algorithm given inputs with high temporal

locality.

60

Thank You!

Full paper: Our group’s website:
arxiv.org/pdf/2301.03074.pdf tu.berlin/en/eninet

Z
S

My website:
pourdamghani.net

61

https://arxiv.org/pdf/2301.03074.pdf
https://www.tu.berlin/en/eninet

