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SeedTree at a glanc®
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1) Why?



Servers and VMs




Online Request Sequence
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VM 1 please!
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Do we have any structure in the demand?
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Structure in The Demand

Can we design a self-adjusting network that utilizes demand?
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Structure in The Demand

Can we design a self-adjusting network that utilizes demand?

Let us start by a dynamically optimal self-adjusting tree!
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2) What?



| want to
communicate
with VM 6 now.

Requests From A Single Source
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Using Local Routing (i.e., Without A Routing Table)!
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Considering A Binary Tree Structure on Servers
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| want to
communicate
with VM 6 now.

Allowing ltem Movements on Edges
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| do not have
capacity!

Allowing ltem Movements on Edges
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| do not have
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Allowing ltem Movements on Edges

18



An Abstraction
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Formal Question
Servers with
a constant
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» A set of servers connected as a binary tree
» Each server with a constant capacity c 0
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20



Formal Question
Servers with
a constant

a Given: capacity ¢

» A set of servers connected as a binary tree
» Each server with a constant capacity c O
> A set of items \
> Revealed over time (o0 = g4, 0y, ..

)

Items Tree

21



Formal Question
Servers with
a constant

0 Given: . capacity ¢
> A set of servers connected as a binary tree
» Each server with a constant capacity c 0
> A set of items
> Revealed over time (o = g4, 0y, ...)
- 0]
» Only local routing based on IDs .

O
Routing

based on IDs

Items Tree

22



Formal Question
Servers with
a constant

0 Given: capacity ¢
> A set of servers connected as a binary tree
» Each server with a constant capacity c Q
> A set of items \
> Revealed over time (o = 0y, 09, ...) ‘

» Only local routing based on IDs

0
Routing
N

m based on IDs
00 11

Items Tree

23



Formal Question
Servers with
a constant

0 Given: . capacity ¢
> A set of servers connected as a binary tree
» Each server with a constant capacity c 0
> A set of items
> Revealed over time (o = g4, 0y, ...)
- 0]
» Only local routing based on IDs .

Routing
based on IDs

1

0]
9
00

Items Tree

24



2 Actions (for a prefilled tree®):

Formal Question
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2 Actions (for a prefilled tree®):
» Access an element (depth)

Formal Question

000 Vb
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Formal Question

2 Actions (for a prefilled tree®):
» Access an element (depth)

» Reconfigure the tree (moving item over an edge)

27



Formal Question
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2 Obijective
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> Total: access + reconfiguration
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2 Actions (for a prefilled tree®):
» Access an element (depth)

Formal Question

» Reconfigure the tree (moving item over an edge)

2 Obijective
> Minimize the total cost

» Total: access + reconfiguration

a Dynamically optimal
> l.e., constant competitive
» CoStyrq < a- Costopr
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Previous work
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3) How?



(1) Uniformly
random hash
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Tools & Techniques
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Self-adjustments Algorithm : Access
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Self-adjustments Algorithm : Access
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Self-adjustments Algorithm : Access
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Self-adjustments Algorithm : Pull-up
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Self-adjustments Algorithm: Pull-up
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Self-adjustments Algorithm: Pull-up
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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Self-adjustments Algorithm: Push-down
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SeedTree Analysis
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SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
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SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.
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SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:

Reconfiguration cost of SeedTree < 2 - ([ -

+ 1) -Access cost of SeedTree.

1-fl 7 o

Proof sketch:

» 1 for pull-up

» Fractional occupancy ensures success

after [Tlf] tries, in expectation




SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.

> Most Recently Used (MRU) Tree:

More recently accessed items = Lower level in the tree



SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.

Proof sketch:
» Recent ones go to the root
» Probability of going a level down decreases

exponentially per level
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SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.
Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.

Q Property 3:
Access cost in MRU Tree < (1 + e) -Access cost of OPT.



SeedTree Analysis

0 Objective (over time and in expectation):

SeedTree is dynamically optimal.
Q Property 1:
Reconfiguration cost of SeedTree < 2 - ([ﬁ} + 1) -Access cost of SeedTree.

Q Property 2:
Access cost of SeedTree < 2 — log(f) -Access cost in MRU Tree.
Q Property 3:
Access cost in MRU Tree < (1 + e) -Access cost of OPT.

Proof sketch:
» Potential function analysis based on inversions

> Inversion: item with lower level but accessed earlier
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Conclusion

0 Designing a constant competitive algorithm, utilizing randomization in each step.
2 Introducing the notion of capacity and item movement for self-adjusting trees.

2 Showing significant improvements in the algorithm given inputs with high temporal

locality.
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Thank You!

Full paper: Our group’s website:
arxiv.org/pdf/2301.03074.pdf tu.berlin/en/eninet
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My website:
pourdamghani.net
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