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I need VM 7.VM 1 please! VM3, now!
I want to 

communicate 
with VM 6 now.

Do we have any structure in the demand?
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Can we design a self-adjusting network that utilizes demand?

https://schmiste.github.io/sigmetrics20complexity.pdf


Structure in The Demand

10On the Complexity of Traffic Traces and Implications 
 Avin et al., ACM SIGMETRICS 2020

Facebook 
Database

Facebook 
Web

Facebook 
Hadoop

Machine 
Learning

HPC CNS

HPC 
MultiGrid

pFabric

Neural 
Networks

Temporal Structure

S
p

at
ia

l S
tr

u
ct

u
re

Can we design a self-adjusting network that utilizes demand?

Let us start by a dynamically optimal self-adjusting tree!

https://schmiste.github.io/sigmetrics20complexity.pdf
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Requests From A Single Source
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Network 
destination

Netmask Gateway Interface Metric

0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.100 10

127.0.0.0 255.0.0.
0

127.0.0.1 127.0.0.1 1

192.168.0.0 255.255.
255.0

192.168.0.10
0

192.168.0.100 10

192.168.0.100 255.255.
255.255 127.0.0.1 127.0.0.1 10
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Considering A Binary Tree Structure on Servers
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Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
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Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)
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22

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with 
a constant 
capacity	𝑐

Routing 
based on IDs

Items

101 001010 ... 000

101



Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)
Ø Only local routing based on IDs

23

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with 
a constant 
capacity	𝑐

Routing 
based on IDs

Items

101 001010 ... 000

101



Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)
Ø Only local routing based on IDs

24

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with 
a constant 
capacity	𝑐

Routing 
based on IDs

Items

110 001010 ... 000

101



Formal Question

q Actions (for a prefilled tree*):

25

ϵ

0

00 01 10 11

1

0 1

0 0 11

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111



Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)
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Formal Question

q Actions (for a prefilled tree*): 
Ø Access an element (depth)
Ø Reconfigure the tree (moving item over an edge)
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Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)
Ø Reconfigure the tree (moving item over an edge)

q Objective
Ø Minimize the total cost
Ø Total: access + reconfiguration
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Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)
Ø Reconfigure the tree (moving item over an edge)

q Objective
Ø Minimize the total cost
Ø Total: access + reconfiguration

q Dynamically optimal
Ø i.e., constant competitive
Ø 𝐶𝑜𝑠𝑡&'( ≤ 𝛼 ⋅ 𝐶𝑜𝑠𝑡)*+
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Previous work
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2) What? 3) How? 

SeedTree
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Self-adjustments Algorithm : Access
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Self-adjustments Algorithm : Access
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Self-adjustments Algorithm : Access
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Self-adjustments Algorithm : Pull-up
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SeedTree Analysis

q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
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q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
q Property 1: 

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.
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q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
q Property 1: 

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

SeedTree Analysis

Proof sketch: 
Ø 1 for pull-up

Ø Fractional occupancy ensures success 

after !
!"#

 tries, in expectation
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q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
q Property 1: 

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree. 

q Property 2: 
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree. 

Ø Most Recently Used (MRU) Tree:

More recently accessed items ⇒ Lower level in the tree

SeedTree Analysis
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q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
q Property 1: 

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree. 

q Property 2: 
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree. 

SeedTree Analysis

Proof sketch: 
Ø Recent ones go to the root

Ø Probability of going a level down decreases 

exponentially per level 



SeedTree Analysis

q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
q Property 1: 

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree. 

q Property 2: 
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree. 

q Property 3: 
Access cost in MRU Tree ≤ 1	 + 𝑒 ⋅Access cost of OPT.
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SeedTree Analysis

q Objective (over time and in expectation):

  SeedTree is dynamically optimal.
q Property 1: 

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree. 

q Property 2: 
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree. 

q Property 3: 
Access cost in MRU Tree ≤ 1	 + 𝑒 ⋅Access cost of OPT.
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Proof sketch: 
Ø Potential function analysis based on inversions

Ø Inversion: item with lower level but accessed earlier

010 001…… …

Their last accesses. OPT’s tree



Performance
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github.com/inet-tub/SeedTree

https://github.com/inet-tub/SeedTree


Conclusion

q Designing a constant competitive algorithm, utilizing randomization in each step.

q Introducing the notion of capacity and item movement for self-adjusting trees. 

q Showing significant improvements in the algorithm given inputs with high temporal 

locality.
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My website: 
pourdamghani.net

Full paper:
arxiv.org/pdf/2301.03074.pdf

Thank You!

Our group’s website:
tu.berlin/en/eninet

https://arxiv.org/pdf/2301.03074.pdf
https://www.tu.berlin/en/eninet

