
SeedTree: A Dynamically Optimal
And Local Self-Adjusting Tree

Arash Pourdamghani
Joint work with Chen Avin, Robert Sama, Stefan Schmid

An adopted version of INFOCOM’23 Talk

Dutch Optimization Seminar
29 June 2023

2

1) Why? 2) What? 3) How?

SeedTree

3

1) Why? 2) What? 3) How?

SeedTree

4

Servers and VMs

5

7

2

6

1

8

4

5

3

9

10

Online Request Sequence

6

7

2

6

1

8

4

5

3

9

10

I need VM 7.VM 1 please! VM3, now!
I want to

communicate
with VM 6 now.

Online Request Sequence

7

7

2

6

1

8

4

5

3

9

10

I need VM 7.VM 1 please! VM3, now!
I want to

communicate
with VM 6 now.

Do we have any structure in the demand?

Structure in The Demand

8On the Complexity of Traffic Traces and Implications
 Avin et al., ACM SIGMETRICS 2020

Facebook
Database

Facebook
Web

Facebook
Hadoop

Machine
Learning

HPC CNS

HPC
MultiGrid

pFabric

Neural
Networks

Temporal Structure

S
p

at
ia

l S
tr

u
ct

u
re

https://schmiste.github.io/sigmetrics20complexity.pdf

Structure in The Demand

9On the Complexity of Traffic Traces and Implications
 Avin et al., ACM SIGMETRICS 2020

Facebook
Database

Facebook
Web

Facebook
Hadoop

Machine
Learning

HPC CNS

HPC
MultiGrid

pFabric

Neural
Networks

Temporal Structure

S
p

at
ia

l S
tr

u
ct

u
re

Can we design a self-adjusting network that utilizes demand?

https://schmiste.github.io/sigmetrics20complexity.pdf

Structure in The Demand

10On the Complexity of Traffic Traces and Implications
 Avin et al., ACM SIGMETRICS 2020

Facebook
Database

Facebook
Web

Facebook
Hadoop

Machine
Learning

HPC CNS

HPC
MultiGrid

pFabric

Neural
Networks

Temporal Structure

S
p

at
ia

l S
tr

u
ct

u
re

Can we design a self-adjusting network that utilizes demand?

Let us start by a dynamically optimal self-adjusting tree!

https://schmiste.github.io/sigmetrics20complexity.pdf

2) What?

SeedTree

11

1) Why? 3) How?

Requests From A Single Source

12

7

2

6

1

8

4

5

3

9

10

I want to
communicate

with VM 6 now.

I Need VM 7.VM 1 Please! VM3, now!

Network
destination

Netmask Gateway Interface Metric

0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.100 10

127.0.0.0 255.0.0.
0

127.0.0.1 127.0.0.1 1

192.168.0.0 255.255.
255.0

192.168.0.10
0

192.168.0.100 10

192.168.0.100 255.255.
255.255 127.0.0.1 127.0.0.1 10

13

Using Local Routing (i.e., Without A Routing Table)!

7

2

6

1

8

4

5

3

9

10

14

Considering A Binary Tree Structure on Servers

7

2

6

1

8

4

5

3

9

10

15

7

2

6

1

8

4

5

3

9

10

Allowing Item Movements on Edges

I want to
communicate

with VM 6 now.

16

7

2
1

8

4

5

3

9

10

Allowing Item Movements on Edges

I do not have
capacity!

6

17

7

2
1

8

4

5

3

9

10

Allowing Item Movements on Edges

6

I do not have
capacity!

18

2

6

1

8

4

5

3

9

10

Allowing Item Movements on Edges

7

19

2

6

1

8

4

5

3

9

10

An Abstraction

7

Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐

20

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with
a constant
capacity	𝑐

Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)

21

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with
a constant
capacity	𝑐

Items

101 001010 ... 000

Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)
Ø Only local routing based on IDs

22

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with
a constant
capacity	𝑐

Routing
based on IDs

Items

101 001010 ... 000

101

Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)
Ø Only local routing based on IDs

23

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with
a constant
capacity	𝑐

Routing
based on IDs

Items

101 001010 ... 000

101

Formal Question

q Given:
Ø A set of servers connected as a binary tree

Ø Each server with a constant capacity 𝑐
Ø A set of items

Ø Revealed over time (𝜎 = 𝜎$, 𝜎%, …)
Ø Only local routing based on IDs

24

ϵ

0

00 01 10 11

1

0 1

0 0 11

Tree

Servers with
a constant
capacity	𝑐

Routing
based on IDs

Items

110 001010 ... 000

101

Formal Question

q Actions (for a prefilled tree*):

25

ϵ

0

00 01 10 11

1

0 1

0 0 11

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)

26

ϵ

0

00 01 10 11

1

0 1

0 0 11

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)
Ø Reconfigure the tree (moving item over an edge)

27

ϵ

0

00 01 10 11

1

0 1

0 0 11

ϵ

0

00 01 10 11

1

0 1

0 0 11

001

010

000

101

110

111

000

Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)
Ø Reconfigure the tree (moving item over an edge)

q Objective
Ø Minimize the total cost
Ø Total: access + reconfiguration

28

ϵ

0

00 01 10 11

1

0 1

0 0 11

ϵ

0

00 01 10 11

1

0 1

0 0 11

001

010

000

101

110

111

000

Formal Question

q Actions (for a prefilled tree*):
Ø Access an element (depth)
Ø Reconfigure the tree (moving item over an edge)

q Objective
Ø Minimize the total cost
Ø Total: access + reconfiguration

q Dynamically optimal
Ø i.e., constant competitive
Ø 𝐶𝑜𝑠𝑡&'(≤ 𝛼 ⋅ 𝐶𝑜𝑠𝑡)*+

29

ϵ

0

00 01 10 11

1

0 1

0 0 11

ϵ

0

00 01 10 11

1

0 1

0 0 11

001

010

000

101

110

111

000

Previous work

30

Data structure Operation Dynamically Optimal Local Routing?

SeedTree [Pouradmghani et al., INFOCOM’23] Item Movement ✅ ✅

2

1

000

Moving
Items

Previous work

31

Data structure Operation Dynamically Optimal Local Routing?

SeedTree [Pouradmghani et al., INFOCOM’23] Item Movement ✅ ✅

Splay Tree [Sleator & Tarjan J. ACM’85] Rotation ? ✅

Tango Tree [Demaine et al. FOCS’04, J. Comput07] Rotation ❌ ✅

MultiSplay [Wamg et al. SODA’06] Rotation ? ✅

2

1

BA

C 2

1

B

A

C

Rotation

2

1

000

Moving
Items

Previous work

32

2

1

BA

C 2

1

B

A

C

Rotation

Data structure Operation Dynamically Optimal Local Routing?

SeedTree [Pouradmghani et al., INFOCOM’23] Item Movement ✅ ✅

Splay Tree [Sleator & Tarjan J. ACM’85] Rotation ? ✅

Tango Tree [Demaine et al. FOCS’04, J. Comput07] Rotation ❌ ✅

MultiSplay [Wamg et al. SODA’06] Rotation ? ✅

Adaptive Huffman [Vitter J.ACM’87, FGK J.ACM’85] Subtree Swap ✅ ❌

Subtree
Swap

1

2A

B

1

2B

A

2

1

000

Moving
Items

Previous work

33

2

1

000

Moving
Items

2

1

BA

C 2

1

B

A

C

Rotation

Data structure Operation Dynamically Optimal Local Routing?

SeedTree [Pouradmghani et al., INFOCOM’23] Item Movement ✅ ✅

Splay Tree [Sleator & Tarjan J. ACM’85] Rotation ? ✅

Tango Tree [Demaine et al. FOCS’04, J. Comput07] Rotation ❌ ✅

MultiSplay [Wamg et al. SODA’06] Rotation ? ✅

Adaptive Huffman [Vitter J.ACM’87, FGK J.ACM’85] Subtree Swap ✅ ❌

Push-down-Tree [Avin et al. LATIN’20, TON’22] Item Swap ✅ ❌

Subtree
Swap

1

2A

B

1

2B

A

2

1

000

Item Swap

101

2) What? 3) How?

SeedTree

34

1) Why?

Tools & Techniques

35

ϵ

0

00 01 10 11

1

0 1

0 0 11

TreeItems

(1) Uniformly
random hash

of items

110 001010 ... 000

101 000100 ... 100

H(
_)

Tools & Techniques

36

ϵ

0

00 01 10 11

1

0 1

0 0 11

TreeItems

(1) Uniformly
random hash

of items

110 001010 ... 000

101 000100 ... 100

H(
_)

(2) Fractional
𝑓 occupancy

per level

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm : Access

37

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Access 111

Self-adjustments Algorithm : Access

38

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Access 111

Self-adjustments Algorithm : Access

39

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Access 111

Self-adjustments Algorithm : Pull-up

40

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

41

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

101

110
111

000

Self-adjustments Algorithm: Pull-up

42

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm: Pull-up

43

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm: Push-down

44

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm: Push-down

45

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

000

101

110

111

Self-adjustments Algorithm: Push-down

010

46

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

000

101

110

111

Self-adjustments Algorithm: Push-down

010

47

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

000

101

110

111

Self-adjustments Algorithm: Push-down

010

48

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm: Push-down

49

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm: Push-down

50

ϵ

0

00 01 10 11

1

0 1

0 0 11

000

001

010

000

101

110

111

Self-adjustments Algorithm: Push-down

SeedTree Analysis

51

SeedTree Analysis

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.

52

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.
q Property 1:

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

53

SeedTree Analysis

54

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.
q Property 1:

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

SeedTree Analysis

Proof sketch:
Ø 1 for pull-up

Ø Fractional occupancy ensures success

after !
!"#

 tries, in expectation

55

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.
q Property 1:

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

q Property 2:
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree.

Ø Most Recently Used (MRU) Tree:

More recently accessed items ⇒ Lower level in the tree

SeedTree Analysis

56

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.
q Property 1:

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

q Property 2:
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree.

SeedTree Analysis

Proof sketch:
Ø Recent ones go to the root

Ø Probability of going a level down decreases

exponentially per level

SeedTree Analysis

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.
q Property 1:

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

q Property 2:
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree.

q Property 3:
Access cost in MRU Tree ≤ 1	 + 𝑒 ⋅Access cost of OPT.

57

SeedTree Analysis

q Objective (over time and in expectation):

 SeedTree is dynamically optimal.
q Property 1:

Reconfiguration cost of SeedTree ≤ 2	 · $
$-. + 	1 ⋅Access cost of SeedTree.

q Property 2:
Access cost of SeedTree ≤ 2	 − log 𝑓 ⋅Access cost in MRU Tree.

q Property 3:
Access cost in MRU Tree ≤ 1	 + 𝑒 ⋅Access cost of OPT.

58

Proof sketch:
Ø Potential function analysis based on inversions

Ø Inversion: item with lower level but accessed earlier

010 001…… …

Their last accesses. OPT’s tree

Performance

59

github.com/inet-tub/SeedTree

https://github.com/inet-tub/SeedTree

Conclusion

q Designing a constant competitive algorithm, utilizing randomization in each step.

q Introducing the notion of capacity and item movement for self-adjusting trees.

q Showing significant improvements in the algorithm given inputs with high temporal

locality.

60

61

My website:
pourdamghani.net

Full paper:
arxiv.org/pdf/2301.03074.pdf

Thank You!

Our group’s website:
tu.berlin/en/eninet

https://arxiv.org/pdf/2301.03074.pdf
https://www.tu.berlin/en/eninet

